Abstract:
Methods and systems for determining for determining asphaltene onset pressure of a formation fluid are described herein. The method includes the following processes: (a) transmitting light through a sample of the formation fluid; (b) decreasing pressure of the sample; (c) detecting intensity of the transmitted light during depressurization; (d) identifying a change in intensity of the transmitted light during depressurization; (e) increasing pressure of the sample to a fixed pressure; and (f) detecting intensity of the transmitted light at the fixed pressure and at an equilibrated light intensity. Processes (a) to (f) are repeated for a number of different fixed pressures. The asphaltene onset pressure of the formation fluid sample can be determined using (i) the intensity of the transmitted light during each depressurization and (ii) the intensity of the transmitted light at each of the different fixed pressures.
Abstract:
A cabinet capable of guiding light, which is used for detecting a biological sample strained with a fluorescent dye, includes a main body, at least one light source, and at least one light guiding structure. The main body has a sample table to place the biological sample. The at least one light source is provided on the main body and near the sample table, wherein the at least one light source provides light required to excite the fluorescent dye incorporated in the biological sample. The at least one light guiding structure is provided between the sample table and the at least one light source to refract the light provided by the at least one light source onto the sample table and the biological sample. Whereby, the biological sample is exposed to more light, and therefore the intensity of the light released from the biological sample is enhanced.
Abstract:
An optical waveguide in which the occurrence of a crack in a cladding layer is prevented, and the SPR sensor cell and the colorimetric sensor cell each using the optical waveguide can be provided. The optical waveguide according to the present invention includes a cladding layer and a core layer buried in the cladding layer so that at least one surface of the core layer is exposed. The cladding layer has a surface hardness of HB to 2H.
Abstract:
A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
Abstract:
Optics collection and detection systems are provided for measuring optical signals from an array of optical sources over time. Methods of using the optics collection and detection systems are also described.
Abstract:
An optofluidic platform is constructed so as to comprise a planar, liquid-core integrated optical waveguides for specific detection of nucleic acids. Most preferably, the optical waveguides comprises antiresonant reflecting optical waveguide (ARROWs). A liquid solution can be prepared and introduced into the optofluidic platform for optical excitation. The resulting optical signal can be collected at the edges of the optofluidic platform and can be analyzed to determine the existence of a single and/or a specific nucleic acid.
Abstract:
The invention relates to a device (1) for the light spectroscopic analysis of a small amount of a liquid sample, comprising a receiving point (3) for receiving small amounts of the liquid sample, and light conductors (5, 6) which guide light of a light source to the sample and guide signal light from the sample in the direction of a detector, and is characterised in that an illumination source (7) is arranged below the receiving point (3), and a region (8) below the receiving point (3) which is permeable for the light of the illumination source (7), is provided such that the illumination light illuminates the receiving point (3).
Abstract:
Example methods and apparatus are disclosed for diagnosing or assisting a diagnosis of a bone tissue condition. A specimen associated with bone tissue suspected of being infected is irradiated using a monochromatic light source. The specimen may be irradiated in vivo or ex vivo, and/or within a growth medium. Light scattered during the irradiation is gathered and its Raman spectral content is determined to detect one or more pathological calcium phosphate minerals, such as brushite and uncarbonated apatite, resulting from a conversion of carbonated-apatite in the presence of bacteria.
Abstract:
System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device. One of multiple markers distinguishable by temporal parameters of the emission energy may label the sample and configuration of the sensor within a pixel may allow for detection of a temporal parameter associated with the marker labeling the sample.
Abstract:
A fluorescence detection system is provided. The fluorescence detection system includes a light source adapted to emit excitation light; a sample unit in which a sample is disposed; a first optical fiber adapted to connect the light source to the sample unit; an avalanche photodiode array detector adapted to receive fluorescent light generated by the sample when the sample is irradiated with the excitation light; and a second optical fiber adapted to connect the sample unit to the avalanche photodiode array detector, wherein the second optical fiber has a numerical aperture of equal to or greater than about 0.15 and the second optical fiber is positioned such that a longitudinal axis of the second optical fiber is orthogonal to a longitudinal axis of the first optical fiber. A method for detecting fluorescence and a computer-implemented method for detecting fluorescence are also provided.