Abstract:
A pattern inspection apparatus including: an image detecting part for detecting a digital image of an object substrate; a display having a screen on which the digital image of the object substrate and/or a distribution of defect candidates in a map form are displayable; an input device for inputting information of a non-inspection region to be masked on the object substrate by defining a region on the screen on which said distribution of defect candidates is displayed in a map form; a memory part for storing coordinate data, pattern data or feature quantity data of the non-inspection region to be masked on the object substrate inputted on the screen by the input device; and a defect judging part in which the digital image detected by the image detecting part is examined in a state that a region matching with a condition stored in the memory part is masked and a defect is detected in a region other than said masked region.
Abstract:
Electrification affected on a surface of a sample which is caused by irradiation of a primary charged particle beam is prevented when plural frames are integrated to obtain an image of a predetermined area of the sample in a charged particle beam apparatus. The predetermined area of the sample is scanned with a primary electron beam from an electron gun, and plural frames are generated and integrated while detecting generated secondary electrons with a detector to obtain the image of the predetermined area. If it is determined by a detection signal of the detector that an electrification amount at the predetermined area becomes a specified value when generating plural frames, an electricity removal voltage is applied to a boosting electrode to remove or reduce the electrification, prior to generation of the next frame. Accordingly, the signal-to-noise ratio of the image obtained by integrating plural frames can be improved.
Abstract:
An object of the present invention is to measure a landing angle even in a multi electron beam lithography system in which current amount of each beam is small. Another object thereof is to measure an absolute value of the landing angle and a relative landing angle with the high SN ratio. In a transmission detector including two diaphragm plates (first and second diaphragms) and a detector, a detection angle determined by a distance between the first and second diaphragms and an aperture diameter of the second diaphragm is made equal to or smaller than the divergence angle of the electron beam to be measured, and the landing angle is determined based on the relation between a center of the fine hole of the first diaphragm and the center of the aperture of the second diaphragm at which the amount of detected current is maximum.
Abstract:
An aberration for correcting higher-order aberrations with a relatively small number of components. Let N1 be the aberration order at a first location. Let S1 be the symmetry at the first location. Let N2 be the aberration order at a second location. Let S2 be the symmetry at the second location. The produced combination aberration satisfies the following condition set 1. order=N1+N2−1 symmetry=|S1+S2| or |S2−S1| That is, two aberration-correcting elements (aberration-introducing elements) corresponding to the first and second locations, respectively, are prepared. An aberration satisfying the condition set 1 is corrected by making use of the produced combination aberration.
Abstract:
An adjusting device of an apparatus for generating a beam of charged particles, wherein said beam is for interacting with a target and wherein said adjusting device comprises interface means for receiving, from a user of the apparatus, a set of desired values of characteristics of the beam of charged particles; means for determining a set of nominal values of adjusting parameters of the apparatus, corresponding to said characteristics and for passing them to the apparatus; means for measuring said adjusting parameters of the apparatus, and for computing corresponding values of said characteristics of the beam; and means for determining whether a correction of said values of adjusting parameters is necessary.
Abstract:
An electric charged particle beam microscope measures a geometric distortion at an arbitrary magnification with high precision, and corrects the geometric distortion. A geometric distortion at a first magnification is measured as an absolute distortion based on a standard specimen having a cyclic structure. A microscopic structure specimen is photographed at a geometric distortion measured first magnification and at a geometric distortion unmeasured second magnification. The image at the first magnification is equally transformed to the second magnification to generate a scaled image. The geometric distortion at the second magnification is measured as a relative distortion based on the scaled image. The absolute distortion at the second magnification is obtained on the basis of the absolute distortion at the first magnification and the relative distortion at the second magnification. Subsequently, the second magnification is replaced with the first magnification, and the relative distortion measurement is repeated.
Abstract:
Left and right sides of the mesh sandwiching the placing region therebetween are set as left and right to-be-fixed portions to be fixed to sample holder separation portions respectively to be moved in a stretch direction. A slit for dividing use is formed from a portion of the periphery of the mesh disposed between the left and right to-be-fixed portions thereof toward the rubber slice-placing position of the mesh in a direction orthogonal to the stretch direction of the rubber slice or a direction inclined thereto. When the to-be-fixed portions are moved in a separation direction by moving the sample holder separation portions, the mesh is divided into left and right parts by the slit for dividing use so that the rubber slice fixed to the left and right sides of the mesh is stretched.
Abstract:
The present invention provides an ion beam processing technology for improving the precision in processing a section of a sample using an ion beam without making a processing time longer than a conventionally required processing time, and for shortening the time required for separating a micro test piece without breaking the sample or the time required for making preparations for the separation. An ion beam processing apparatus is structured so that an axis along which an ion beam is drawn out of an ion source and an ion beam irradiation axis along which the ion beam is irradiated to a sample mounted on a first sample stage will meet at an angle. Furthermore, the ion beam processing apparatus has a tilting ability to vary an angle of irradiation, at which the ion beam is irradiated to the sample, by rotating a second sample stage, on which a test piece extracted from the sample by performing ion beam processing is mounted, about the tilting axis of the second sample stage. The ion beam processing apparatus is structured so that a segment drawn by projecting the axis, along which the ion beam is drawn out of the ion source, on a plane perpendicular to the ion beam irradiation axis can be at least substantially parallel to a segment drawn by projecting the tilting axis of the second sample stage on the plane perpendicular to the ion beam irradiation axis.
Abstract:
An electron beam apparatus for providing an evaluation of a sample, such as a semiconductor wafer, that includes a micro-pattern with a minimum line width not greater than 0.1 μm with high throughput. A primary electron beam generated by an electron gun is irradiated onto a sample and secondary electrons emanating from the sample are formed into an image on a detector by an image projection optical system. An electron gun 61 has a cathode 1 and a drawing electrode 3, and an electron emission surface 1a of the cathode defines a concave surface. The drawing electrode 3 has a convex surface 3a composed of a partial outer surface of a second sphere facing the electron emission surface 1a of the cathode and an aperture 73 formed through the convex surface for passage of the electrons. An aberration correction optical apparatus comprises two identically sized multi-polar Wien filters arranged such that their centers are in alignment with a 1/4 plane position and a ¾ plane position, respectively, along an object plane-image plane segment in the aberration correction optical apparatus, and optical elements having bidirectional focus disposed in an object plane position, an intermediate image-formation plane position and an image plane position, respectively, in the aberration correction optical apparatus.
Abstract:
An apparatus including a positioner control device, a measuring device and a control routine. The positioner control device is communicatively coupled to a chamber of a charged particle beam device (CPBD) and is configured to individually manipulate each of a plurality of probes within the CPBD chamber to establish contact between ones of the plurality of probes and corresponding ones of a plurality of contact points of a sample positioned in the CPBD chamber. The measuring device is communicatively coupled to the CPBD and the positioner control device and is configured to perform one of a measurement and a detection of a characteristic associated with one of the plurality of contact points. The control routine is configured to at least partially automate control of at least one of the CPBD, the positioner control device and the measuring device.