Abstract:
An object of the present invention is to provide a laminate for forming a capacitor layer for a printed wiring board which is capable of ensuring a higher capacitance and an inner layer core material using the laminate for example. In order to achieve this object, a material for forming a capacitor layer comprising a three-layered structure of an aluminum layer 2/a modified alumina barrier layer 3/an electrode copper layer 4 is used, such as a laminate 1a for forming a capacitor layer in which the above described modified alumina barrier layer 3 is obtained through subjecting one side of an aluminum plate or aluminum foil to an anodic treatment to form an alumina barrier layer as a uniform oxide layer and then subjecting the alumina material with the above described alumina barrier layer formed thereon to a boiling and modifying treatment in water and the above described modified aluminum barrier layer 3 is used as a dielectric layer.
Abstract:
A circuit substrate includes a passive element and an interconnection pattern, wherein any of the passive element and the interconnection pattern is formed by an aerosol deposition process that uses aerosol of a fine particle material.
Abstract:
The invention relates to a thin film capacitor containing (a) a substrate, (b) a first polymeric film comprising an electrically conductive polymer located on the substrate, (c) a pentoxide layer selected from the group consisting of tantalum pentoxide, or niobium pentoxide, and mixtures thereof, (d) a second polymeric film comprising an electrically conductive polymer located on the pentoxide layer.
Abstract:
A method of making a charge containing element including the steps of depositing and patterning a dielectric material on a surface wherein the dielectric material includes a metallo-organic component and a liquid component; and decomposing by laser light the deposited dielectric material to substantially evaporate the liquid component to cause the metallic portion of the metallo-organic component to react with oxygen causing the dielectric material to have charge-holding properties.
Abstract:
A process for fabricating a multi-layer circuit assembly is provided comprising the following steps: (a) providing a perforate electrically conductive core having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the electrically conductive core to form a conformal coating on all exposed surfaces of the electrically conductive core; (c) ablating the surface of the dielectric coating in a predetermined pattern to expose sections of the electrically conductive core; (d) applying a layer of metal to all surfaces to form metallized vias through the electrically conductive core; and (e) applying a resinous photosensitive layer to the metal layer. Additional processing steps such as circuitization may be included. Also provided are multi-layer circuit assemblies produced by the process of the present invention, comprising component layers having high via density and thermal coefficients of expansion that are compatible with those of semiconductor chips and rigid wiring boards which may be attached as components of the circuit assembly.
Abstract:
Nanolaminates are formed by alternating deposition, e.g., by combustion chemical vapor deposition (CCVD), layers of resistive material and layers of dielectric material. Outer resistive material layers are patterned to form discrete patches of resistive material. Electrical pathways between opposed patches of resistive material on opposite sides of the laminate act as capacitors. Electrical pathways horizontally through resistive material layers, which may be connected by via plated holes, act as resistors.
Abstract:
A terminal electrode provided on a lead joint of a thin-film device fabricated by a thin-film technology. The terminal electrode is constituted by an upper pad and a lower pad, the lower pad being formed into a pillar-like shape protuberantly projecting from the lead joint. The upper pad, which is wider than the lower pad, is formed on the lower pad such that the center thereof is aligned with the center of the lower pad. This arrangement provides the terminal electrode that allows a higher-density insulating layer free of defects, such as voids, to be formed around the terminal electrode, leading to an improved mounting strength of the terminal electrode.
Abstract:
A parallel capacitor structure capable of forming an internal part of a larger circuit board or the like structure to provide capacitance therefore. Alternatively, the capacitor may be used as an interconnector to interconnect two different electronic components (e.g., chip carriers, circuit boards, and even semiconductor chips) while still providing desired levels of capacitance for one or more of said components. The capacitor includes at least one internal conductive layer, two additional conductor layers added on opposite sides of the internal conductor, and inorganic dielectric material (preferably an oxide layer on the second conductor layer's outer surfaces or a suitable dielectric material such as barium titanate applied to the second conductor layers). Further, the capacitor includes outer conductor layers atop the inorganic dielectric material, thus forming a parallel capacitor between the internal and added conductive layers and the outer conductors.
Abstract:
The invention provides a production method capable of forming a thin film resistance element having a thickness and a shape controlled in a high accuracy in a printed circuit board. The production method of a thin film resistance element formed on a printed circuit board, has the steps of forming a thin film resistance layer having a predetermined thickness on the printed circuit board through an insulation layer by a dry process used in producing a semiconductor, forming an electrically conductive layer on the thin resistance layer, and etching the electrically conductive layer selectively so as to make, at least, a pair of electrically conductive pads, resulting in the thin film resistance element having a predetermined value of resistivity between the pair of electrically conductive pads. Thereby, it is possible to form the thin film resistance element having a thickness and a shape controlled in a high accuracy on the printed circuit board.
Abstract:
A surface treatment or mask that inhibits polymer whetting and bonding is applied to all but the mating bond areas of the interface between a substrate and a device. A polymer material is applied to the bond areas of either the substrate or the device. The device is placed onto the substrate such that the polymer material bridges the mating bond areas of both the substrate and the device. As the polymer material is cured, surface tension pulls it into a vertical column defined by the polymer mask defined mating bond areas of the substrate and device and aligns the mating bond areas directly over each other. Once cured, the polymer forms a mechanical bond and, depending upon the polymer material, forms an electrical, thermal and/or optical connection between the substrate and the device.