Abstract:
Embedded green multi-layer ceramic capacitors in low-temperature co-fired ceramic (LTCC) substrates are provided. A first set of electrodes is printed on a ceramic tape. A first dielectric layer is placed over the first set of electrodes and the ceramic tape. A second set of electrodes is printed on the first dielectric layer. A second dielectric layer is placed over the second set of electrodes and the first dielectric layer. A third set of electrodes is printed on the second dielectric layer. The sheet is then cut to form separate green multi-layer ceramic capacitor chips. The green multi-layer ceramic capacitor chips are then placed in a cavity formed by ceramic tape.
Abstract:
Telecommunication main distribution frame structure including a PC board, several pairs of insertion pins, four insertion seats, four buses, four corresponding insertion seats connected with one end of the buses and four connectors connected with the other end of the buses. The PC board is formed with several insertion holes and soldering holes electrically connected with each other. The insertion seats are soldered at the soldering holes of the PC board. The corresponding insertion seats are inserted in the insertion seats. The PC board has a left board, a middle board and a right boards integrally connected with each other. Each of two openings of the insertion hole is provided with a circle of shallow conductive face divided-by a locating split into a left and a right halves. Each of two openings of the soldering hole is provided with a shallow conductive face. The insertion pin is a rectangular column made of insulating material. Each of two ends thereof is formed with a lip and a resilient well conductive plate is connected between the lips. The insertion pins are inserted into the insertion holes with the conductive plate aimed at the locating split of the insertion hole, whereby the conductive plate is resiliently pressed to contact with the conductive faces of the insertion hole so as to electrically connect the conductive faces.
Abstract:
A tuner unit includes a unit board. The unit board is formed, at its lower end, with a protrusion to have a terminal pattern formed on the protrusion. A frame chassis has a side plate having, at its lower end, a protrusion having a tapered side face in one of side faces. When the protrusion of the unit board is inserted in a hole of a main board, the tapered side face is inserted while abutted against an inner edge of a hole of the main board. This urges the protrusion in a direction that the terminal pattern is brought close to the connection pattern of the main board.
Abstract:
A control module for a motor vehicle cab, the module comprising a box, at least one power card and at least one control card placed in said box, wherein the control card extends substantially perpendicularly to the power card and wherein said box is constituted by two half-boxes that are closed together and hinged about a hinge with which they are integrally formed, one of the half-boxes having means forming housings that receive tongues and/or female pins which co-operate with said housing-forming means to define connectors, and also having a case which provides mechanical protection for the control card.
Abstract:
An integrated circuit package substrate. At least one insulating layer is formed between every two neighboring patterned wiring layers for isolation. At least a via is formed to penetrate through the insulating layers to electrically connect the patterned wiring layers. A capacitor is formed within at least one of the insulating layer. The capacitor has two electrodes insulated by a dielectric layer. One of the electrodes is connected to a power source, while the other is connected to ground.
Abstract:
A printed circuit board includes at least one via providing a conductive path through the printed circuit board. The via comprises at least one axially extending conductive strip fonned by cutting material from a metal barrel lining the interior wall of the via.
Abstract:
The present invention relates to a heating method and a printed circuit board comprising a heating element which generates heat required to heat printed circuit board components. The printed circuit board comprises heat conductor between the heating element and the component to be heated, the heat conductor receiving heat generated by the heating element and conducting the heat along the surface of the printed circuit board beneath the lower surface of the component to be heated. Furthermore, the printed circuit board comprises conductor parts which are narrower that the heat conductor, or which have a smaller cross-sectional surface area than does the heat conductor, and which restrict heat transfer away from the heat conductor to a component other than the one to be heated when the heat conductor functions as a ground plane or a signal path.
Abstract:
A method is provided for selectively metallizing one or more three-dimensional materials in an electronic circuit package comprising the steps of forming a layer of seeding solution on a surface of the three-dimensional material of interest, exposing this layer to light of appropriate wavelength, resulting in the formation of metal seed on regions of the three-dimensional material corresponding to the regions of the layer of seeding solution exposed to light; removing the unexposed regions of the layer of seeding solution by subjecting the exposed and unexposed regions of the layer of seeding solution to an alkaline solution. Thereafter, additional metal is deposited, e.g., plated, onto the metal seed using conventional techniques. Significantly, this method does not involve the use of a photoresist, or of a corresponding chemical developer or photoresist stripper. Of additional significance, this method is ideal for plating three-dimensional materials such as cone-shaped connectors used in electronic circuit packages.
Abstract:
A single in-line memory module (SIMM) for memory expansion in a computer system. The SIMM includes a plurality of memory chips surface-mounted on a printed circuit board. The printed circuit board includes a dual read-out connector edge adapted for insertion within a socket of the computer system. One or more driver chips may further be mounted on the printed circuit board and connected to distribute control signals to the memory chips. A full-width data path may further be connected between the dual read-out connector edge and the plurality of memory chips.
Abstract:
A full width single in-line memory module (SIMM) for dynamic random access memory (DRAM) memory expansions is disclosed. A printed circuit board having a multiplicity of DRAM memory elements mounted thereto is arranged in a data path having a width of 144 bits. The SIMM of the present invention further includes on-board drivers to buffer and drive signals in close proximity to the memory elements. In addition, electrically conductive traces are routed on the circuit board in such a manner to reduce loading and trace capacitance to minimize signal skew to the distributed memory elements. The SIMM further includes a high pin density dual readout connector structure receiving electrical traces from both sides of the circuit board for enhanced functionality. The SIMM is installed in complementary sockets one SIMM, at a time to provide memory expansion in full width increments. Finally, symmetrical power and ground routings to the connector structure insure that the SIMM cannot be inserted incorrectly, wherein physically reversing the SIMM in the connector slot will not reverse power the SIMM.