Abstract:
A thin film magnetic media structure with a bi-layer structure of amorphous chromium titanium (CrTi) followed by an amorphous layer of nickel phosphorus (NiP) is disclosed. After the NiP has been deposited it is exposed to oxygen to form an oxidized surface. Preferably the underlayer is deposited directly onto the oxidized NiP surface. The bi-layer structure of CrTi/NiP promotes excellent in-plane crystallographic orientation in the cobalt alloy magnetic layer(s) and allows an ultra-thin chromium underlayer to be used which provides better control over grain size and distribution. When the CrTi/NiP bi-layer structure is combined with a circumferentially textured substrate, preferably glass, a high Mrt orientation ratio (OR) results.
Abstract:
An electron emissive composition comprises a barium tantalate composition of the formula (Ba1−x, Cax, Srp, Dq)6(Ta1−y, Wy, Et, Fu, Gv, Caw)2O(11±δ) where δ is an amount of about 0 to about −3; and wherein D is either an alkali earth metal ion or an alkaline earth ion; E, F, and G, are alkaline earth ions and/or transition metal ion; x is an amount of up to about 0.7; y is an amount of up to about 1; p and q are amounts of up to about 0.3; and t is an amount of about 0.05 to about 0.10, u is an amount of up to about 0.5, v is an amount of up to about 0.5 and w is an amount of up to about 0.25. A method for manufacturing an electron emissive composition comprises blending a barium tantalate composition with a binder; and sintering the barium tantalate composition with the binder at a temperature of about 1000° C. to about 1700° C.
Abstract:
An electrons' emission device is presented. The device comprises an electrodes' arrangement including at least one Cathode electrode and at least one Anode electrode, the Cathode and Anode electrodes being arranged in a spaced-apart relationship; the device being configured to expose said at least one Cathode electrode to exciting illumination to thereby cause electrons' emission from said Cathode electrode, the device being operable as a photoemission switching device.
Abstract:
A display device is presented. The display device includes an electrodes' arrangement and an electrons' extractor. The electrodes' arrangement comprises a Cathode electrode layer having at least one Cathode electrode and an Anode electrode layer having at least one Anode electrode, the Cathode and Anode electrode layers being accommodated in a spaced-apart relationship with a gap between them. The Anode layer carries a luminescent screen assembly on its surface. The electrodes arrangement is operable to create a desired electrical field between the electrodes. The electrons' extractor operates to extract electrons from at least a selected region of the Cathode electrode layer by illuminating this Cathode region with exciting illumination of a predetermined wavelength range to cause the electron emission from the illuminated Cathode region.
Abstract:
A method for making carbon nanotube particulates involves providing a catalyst comprising catalytic metals, such as iron and molybdenum or metals from Group VIB or Group VIIIB elements, on a support material, such as magnesia, and contacting the catalyst with a gaseous carbon-containing feedstock, such as methane, at a sufficient temperature and for a sufficient contact time to make small-diameter carbon nanotubes having one or more walls and outer wall diameters of less than about 3 nm. Removal of the support material from the carbon nanotubes yields particulates of enmeshed carbon nanotubes that retain an approximate three-dimensional shape and size of the particulate support that was removed. The carbon nanotube particulates can comprise ropes of carbon nanotubes. The carbon nanotube particulates disperse well in polymers and show high conductivity in polymers at low loadings. As electrical emitters, the carbon nanotube particulates exhibit very low “turn on” emission field.
Abstract:
Process for manufacturing micromechanical components having a part made of diamond, consisting of at least one tip (3a), in which a substrate (8a) is prepared, in order to form an impression (13a) of the shape desired for the part made of diamond; the part made of diamond is produced by chemical vapor deposition of diamond in the impression and is then separated from the substrate. In order to produce the part made of diamond, a primary film of fine diamond particles, of diameter less than 10 nm, suitable to act as seeds for growth of the diamond are deposited on the substrate, on the surface of the impression (13a), before chemical vapor deposition; the diamond film is then grown by vapor deposition; and the substrate (8a) is then at least partly removed.
Abstract:
Electron emission materials consisting of carbides, borides, and oxides, and related mixtures and compounds, of Group IVB metals Hf, Zr, and Ti, Group IIA metals Be, Mg, Ca, Sr, and Ba, and Group IIIB metals Sc, Y and lanthanides La through Lu are used in electrodes. These electron emission materials are typically contained in a refractory metal matrix formed of tungsten, tantalum, rhenium, and their alloys, but may also be used by themselves. These materials and electrodes have high melting points, low vapor pressures, low work functions, high electrical and thermal conductivity, and high thermionic electron emission and field emission properties.
Abstract:
A device comprising a conductor and an emitter electrode for emitting electrons formed on the conductor, the emitter electrode including a mass of a plurality of columnar crystals each containing .beta.-tungsten and having a sharpened tip end portion for emitting electrons, the plurality of columnar crystals being put in contact with one another.
Abstract:
A data processing system and method for selecting securities and constructing an investment portfolio is based on a set of artificial neural networks which are designed to model and track the performance of each security in a given capital market and output a parameter which is related to the expected risk adjusted return for the security. Each artificial neural network is trained using a number of fundamental and price and volume history input parameters about the security and the underlying index. The system combines the expected return/appreciation potential data for each security via an optimization process to construct an investment portfolio which satisfies predetermined aggregate statistics. The data processing system receives input from the capital market and periodically evaluates the performance of the investment portfolio, rebalancing it whenever necessary to correct performance degradations.
Abstract:
A spacer (200) for a field emission display (201) is disclosed. The spacer (200) includes a lower resistive region (220) and an upper insulative region (222). The spacer (200) has a member (210) which is coated with a resistive coating (212) extending between the lower end of the member and a height (h.sub.2) less than the total height (h.sub.1) of the spacer (200). An insulative coating (218) is formed on the member (210) and extends between the upper end of the resistive coating (212) and the upper end of the member (210). The resistive coating (212) has a secondary electron yield less than 2 over the lower resistive region (220) of the spacer (200). The insulative coating (218) has a secondary electron yield between 0.75-2 over the upper insulative region (222) of the spacer (200).