Abstract:
An electron microscope is provided with a scintillator (7) and a light guide (8). The scintillator (7) has an index of refraction greater than the index of refraction of the light guide (8), and an end surface (72) joined to the light guide (8) is formed from a curved surface with a convex shape on the outside. The scintillator (7) is formed by a Y—Al—O based ceramic sintered body represented by the compositional formula (Ln1-xCex)3M5O12 (wherein Ln represents at least one element selected from the group consisting of Y, Gd, La, and Lu, and M represents either or both of Al and Ga).
Abstract:
A beam energy measuring device in an ion implanter includes a parallelism measuring unit that measures a parallelism of an ion beam at a downstream of a beam collimator of the ion implanter and an energy calculating unit that calculates an energy of the ion beam from the measured parallelism. The ion implanter may further include a control unit that controls a high energy multistage linear acceleration unit based on the measured energy of the ion beam so that the ion beam has a target energy.
Abstract:
A charged particle beam writing apparatus includes a storage unit to store each pattern data of plural figure patterns arranged in each of plural small regions made by virtually dividing a writing region of a target workpiece to be written on which resist being coated. The charged particle beam writing apparatus further including an assignment unit to assign each pattern data of each figure pattern to be arranged in each of the plural small regions concerned, and a writing unit to write, for each of plural groups, each figure pattern in each of the plural small regions concerned by using a charged particle beam.
Abstract:
A machine for atmospheric plasma treatment of continuous material substrates comprises means for feeding a substrate for moving it along a feed path; at least two electrodes each positioned at one face of the substrate, each electrode facing a respective face of the substrate, a difference in electric potential being applicable across the electrodes for generating an electric discharge; the feed means comprising at least one first roller and one second roller, the first roller and the second roller coinciding with respective electrodes and each acting on a respective face of the substrate.
Abstract:
A method for packetizing a beam-charged particle, in which the particles pass through an electric field in a device is provided. The device includes an annular shaped central electrode which, in the direction of the beam, is arranged between a first outer electrode and a second outer electrode. A time-dependent electric voltage signal is applied to the central electrode, the temporal course thereof being selected such that particles inside the device undergo a position-dependent speed modification. The course of the speed modification is approximately sawtooth-shaped in the direction of the beam. An associated device is also provided.
Abstract:
A method of operating a charged particle beam device is provided. The charged particle beam device includes a beam separator that defines an optical axis, and includes a magnetic beam separation portion and an electrostatic beam separation portion. The method includes generating a primary charged particle beam, and applying a voltage to a sample, the voltage being set to a first value to determine a first landing energy of the primary charged particle beam. The method further includes creating an electric current in the magnetic beam separation portion, the current being set to a first value to generate a first magnetic field, and applying a voltage to the electrostatic beam separation portion, the voltage being set to a first value to generate a first electric field. The method includes guiding the primary charged particle beam to the beam separator, wherein the primary charged particle beam enters the beam separator at a first angle relative to the optical axis and, under the influence of the first magnetic field and the first electric field, leaves the beam separator at a second angle relative to the optical axis. The method includes generating a secondary charged particle beam by impingement of the primary charged particle beam on the sample to which the voltage with the first value is applied, and separating the secondary charged particle beam from the primary charged particle beam in the beam separator, wherein the secondary charged particle beam enters the beam separator at a third angle relative to the optical axis and, under the influence of the first magnetic field and the first electric field, leaves the beam separator at a fourth angle relative to the optical axis. The first angle and the fourth angle are different. The method further includes applying the voltage to the sample, the voltage being set to a second value to determine a second landing energy of the primary charged particle beam, creating the electric current in the magnetic beam separation portion, the electric current being set to a second value to generate a second magnetic field, applying the voltage to the electrostatic beam separation portion, the voltage being set to a second value to generate a second electric field, guiding the primary charged particle beam to the beam separator, wherein the primary charged particle beam enters the beam separator at the first angle relative to the optical axis and, under the influence of the second magnetic field and the second electric field, leaves the beam separator at the second angle relative to the optical axis, generating the secondary charged particle beam by impingement of the primary charged particle beam on the sample to which the voltage with the second value is applied, and separating the secondary charged particle beam from the primary charged particle beam in the beam separator, wherein the secondary charged particle beam enters the beam separator at the third angle relative to the optical axis and, under the influence of the second magnetic field and the second electric field, leaves the beam separator at the fourth angle relative to the optical axis.
Abstract:
A mass analyzer for use in a mass spectrometer. The mass analyzer has a set of electrodes including electrodes arranged to form at least one electrostatic sector, the set of electrodes being spatially arranged to be capable of providing an electrostatic field in a reference plane suitable for guiding ions along a closed orbit in the reference plane, wherein the set of electrodes extend along a drift path that is locally orthogonal to the reference plane and that curves around a reference axis so that, in use, the set of electrodes provide a 3D electrostatic field region. The mass analyzer is configured so that, in use, the 3D electrostatic field region provided by the set of electrodes guides ions having different initial coordinates and velocities along a single predetermined 3D reference trajectory that curves around the reference axis.
Abstract:
An ion implanter and an ion implant method are disclosed. Essentially, the wafer is moved along one direction and an aperture mechanism having an aperture is moved along another direction, so that the projected area of an ion beam filtered by the aperture is two-dimensionally scanned over the wafer. Thus, the required hardware and/or operation to move the wafer may be simplified. Further, when a ribbon ion beam is provided, the shape/size of the aperture may be similar to the size/shape of a traditional spot beam, so that a traditional two-dimensional scan may be achieved. Optionally, the ion beam path may be fixed without scanning the ion beam when the ion beam is to be implanted into the wafer, also the area of the aperture may be adjustable during a period of moving the aperture across the ion beam.
Abstract:
A microwave plasma reactor for manufacturing a synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber (2); a substrate holder (4) disposed in the plasma chamber for supporting a substrate on which the synthetic diamond material is to be deposited in use; a microwave coupling configuration (12) for feeding microwaves from a microwave generator (8) into the plasma chamber; and a gas flow system (13,16) for feeding process gases into the plasma chamber and removing them therefrom, wherein the microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber comprises: an annular dielectric window (18) formed in one or several sections; a coaxial waveguide (14) having a central inner conductor (20) and an outer conductor (22) for feeding microwaves to the annular dielectric window; and a waveguide plate (24) comprising a plurality of apertures (28) disposed in an annular configuration with a plurality of arms (26) extending between the apertures, each aperture forming a waveguide for coupling microwaves towards the plasma chamber.
Abstract:
Stored energy is evaluated for each of segmented regions, and using the evaluated stored energy, an optimal irradiation amount for an electron beam is evaluated by a conjugate gradient method. The evaluated stored energy is used instead of calculating a determinant (Apk) in the procedure that includes calculation of the determinant (Apk) from among repeated calculation procedures that follow the conjugate gradient method and seek to answer a simultaneous linear equation (Ax=b) with a matrix (A) as a coefficient. Thus it is possible to evaluate the optimal irradiation amount for an electron beam with a high processing speed and a high degree of accuracy, and without expressly requiring the calculation of Apk, by managing the giant matrix (A) comprising numerous factors according to reduction of lines of circuitry in a circuit pattern.