Abstract:
The invention relates to a method for determining a beamlet position in a charged particle multi-beamlet exposure apparatus. The apparatus is provided with a sensor comprising a conversion element for converting charged particle energy into light and a light sensitive detector. The conversion element is provided with a sensor surface area provided with a 2D-pattern of beamlet blocking and non-blocking regions. The method comprises taking a plurality of measurements and determining the position of the beamlet with respect to the 2D-pattern on the basis of a 2D-image created by means of the measurements. Each measurement comprises exposing a feature onto a portion of the 2D-pattern with a beamlet, wherein the feature position differs for each measurement, receiving light transmitted through the non-blocking regions, converting the received light into a light intensity value, and assigning the light intensity value to the position at which the measurement was taken.
Abstract:
The invention relates to a lithography system, for example for projecting an image or an image pattern on to a target (1) such as a wafer, said target being included in said system by means of a target table (2), clamping means being present for clamping said target on said table. Said clamping means comprises a layer or stationary liquid (3), included at such thickness between target and target table that, provided the material of the liquid (C) and of the respective contacting faces (A, B) of the target (1) and target table (2), a pressure drop (PCap) arises.
Abstract:
An apparatus for transferring a target, such as a substrate or a substrate support structure onto which a substrate has been clamped, from a substrate transfer system to a vacuum chamber of a lithography system. The apparatus comprises a load lock chamber for transferring the target into and out of the vacuum chamber. The load lock chamber comprises a first wall with a first passage providing access between a robot space and the interior of the load lock chamber, a second wall with a second passage providing access between the interior of the load lock chamber and the vacuum chamber, and plurality of handling robots for transferring the targets comprising: a first handling robot movable within the robot space to access the substrate transfer system and the first passage; and a second handling robot movable within the load lock chamber to access the first passage and the second passage.
Abstract:
A lithography system (10) comprising a radiation projection system (20) for projecting radiation onto a substrate, a substrate transport system (30) for loading and positioning the substrate to be processed in the path of the projected radiation, a control system (40) for controlling the substrate transport system to move the substrate, and a resist characterization system (50) arranged for determining whether a specific type of resist is suitable to be exposed by radiation within the lithography system. The resist characterization system (50) may be arranged for exposing the resist on a surface of the substrate with one or more radiation beams, measuring a mass distribution of molecular fragments emitted from the resist, predicting a growth rate of deposited molecular fragments on the basis of a growth rate model and the measured mass distribution, and comparing the expected growth rate with a predetermined threshold growth rate.
Abstract:
The invention relates to a cathode arrangement comprising: a thermionic cathode comprising an emission portion provided with an emission surface for emitting electrons, and a reservoir for holding a material, wherein the material, when heated, releases work function lowering particles that diffuse towards the emission portion and emanate at the emission surface at a first evaporation rate; a focusing electrode comprising a focusing surface for focusing the electrons emitted from the emission surface of the cathode; and an adjustable heat source configured for keeping the focusing surface at a temperature at which accumulation of work function lowering particles on the focusing surface is prevented.
Abstract:
The invention relates to a cathode arrangement comprising: a cathode body housing an emission surface for emitting electrons in a longitudinal direction, wherein the emission surface is bounded by an emission perimeter; a focusing electrode at least partially enclosing the cathode body in a transversal direction and comprising an electron transmission aperture for focusing the electrons emitted by the emission surface, wherein the aperture is bounded by an aperture perimeter, wherein the cathode body is moveably arranged within the focusing electrode over a maximum transversal distance from an aligned position, and wherein the aperture perimeter transversally extends over the emission surface and beyond the emission perimeter over an overlap distance that exceeds the maximum transversal distance.
Abstract:
The invention relates to a modulation device for modulating charged particle beamlets in accordance with pattern data in a multi-beamlet charged particle lithography system. The device comprises a plate-like body, an array of beamlet deflectors, a plurality of power supply terminals (202-205) for supplying at least two different voltages, a plurality of control circuits, and a conductive slab (201) for supplying electrical power to one or more of the power supply terminals (202-205). The plate-like body is divided into an elongated beam area (51) and an elongated non-beam area (52) positioned with their long edges adjacent to each other. The beamlet deflectors are located in the beam area. The control circuits are located in non-beam area. The conductive slab is connected to the control circuits in the non-beam area. The conductive slab comprises a plurality of thin conductive plates (202-205).
Abstract:
A lithography system having one or more lithography elements Each lithography element has a plurality of lithography subsystems. The lithography system further has a control network forming a control network path between the plurality of the lithography subsystems and at least one element control unit for communication of control information. The lithography system is arranged for: issuing control information to the at least one element control unit to control operation of one or more of the lithography subsystems for exposure of one or more wafers; issuing a process program to the element control unit. The process program has a set of predefined commands and associated parameters. The element control unit is arranged to transmit a command of the process program to a lithography subsystem to be executed by the lithography subsystem, regardless of an execution status of a preceding command transmitted to the lithography subsystem.
Abstract:
The invention relates to a collimator electrode, comprising an electrode body (81) that is provided with a central electrode aperture (82), wherein the electrode body defines an electrode height between two opposite main surfaces, and wherein the electrode body accommodates a cooling conduit (105) inside the electrode body for transferring a cooling liquid (102). The electrode body preferably has a disk shape or an oblate ring shape.The invention further relates to a collimator electrode stack for use in a charged particle beam generator, comprising a first collimator electrode and a second collimator electrode that are each provided with a cooling conduit (105) for transferring the cooling liquid (102), and a connecting conduit (110) for a liquid connection between the cooling conduits of the first and second collimator electrodes.
Abstract:
The invention relates to a charged particle lithography system for transferring a pattern onto a target, said system comprising:a target positioning device comprising a target holder having a first side for holding the target,a charged particle optical unit for generating a charged particle beam, modulating said charged particle beam, and directing said charged particle beam towards the first side of the target holder, anda sensor assembly comprising a converter element for converting charged particles which impinge on said converter element into light, wherein the converter element is arranged on said target positioning device, a light sensor for detecting the light, wherein the light sensor is arranged at a distance from said target positioning device, and a light optical lens which is arranged between the converter element and the light sensor for directing light originating from said converter element to said sensor.