Abstract:
Disclosed is a formed article comprising a layer obtained by implanting ions of a hydrocarbon compound into a polyorganosiloxane compound-containing layer. Also disclosed are: a method of producing the formed article, the method comprising implanting ions of a hydrocarbon compound into a surface of a polyorganosiloxane compound-containing layer of a formed body that includes the polyorganosiloxane compound-containing layer in its surface; an electronic device member that includes the formed article; and an electronic device that includes the electronic device member. The present invention provides; a formed article which exhibits an excellent gas barrier capability, transparency, bendability, antistatic performance, and surface flatness; a method of producing the formed article, an electronic device member, and an electronic device.
Abstract:
A method for producing a reflection-reducing layer system on a substrate and a reflection-reducing layer system are disclosed. According to an embodiment the method includes depositing a refractive index gradient layer on the substrate by co-evaporation of an inorganic material and an organic material, wherein the refractive index gradient layer has a refractive index which decreases in a growth direction, depositing an organic layer above the refractive index gradient layer, and producing a nanostructure in the organic layer by a plasma etching process.
Abstract:
A method of making a colored biocidal multi-layer structure includes providing a first layer of a first color and locating a biocidal second layer on or over the first layer. The biocidal second layer has a second color different from the first color.
Abstract:
A colored biocidal multi-layer structure includes a first layer of a first color and a biocidal second layer on or over the first layer. The biocidal second layer has a second color different from the first color.
Abstract:
Embodiments of the invention relate generally to methods and compositions for forming porous low refractive index coatings on substrates. In one embodiment, a method for forming a porous coating on a substrate is provided. The method comprises coating a substrate with a sol-gel composition, comprising at least one porosity forming agent, wherein the porosity forming agent is selected from at least one of dendrimers and organic nanocrystals and removing the at least one porosity forming agent to form the porous coating. Use of at least one of the dendrimers and organic nanocrystals leads to the formation of stable pores with larger volume fraction in the film. Further, the size and interconnectivity of the pores may be controlled via selection of the organic nanocrystal or dendrimer structure, the total organic nanocrystal or dendrimer molecule fraction, polarity of the organic nanocrystal or dendrimer molecule and solvent, and other physiochemical properties of the gel phase.
Abstract:
The invention relates to the application of a coating to a substrate in which the coating includes a polymer material and the coating is selectively fluorinated and/or cured to improve the liquid repellance of the same. The invention also provides for the selective fluorination and/or curing of selected areas of the coating thus, when completed, providing a coating which has regions of improved liquid repellance with respect to the remaining regions and which remaining regions may be utilized as liquid collection areas.
Abstract:
A method and apparatus for acquiring a nanostructured coating on a metal surface by using an intense shock wave generated by continuous explosion of a laser-induced plasma is provided. The method comprises: irradiating a laser beam on a black paint surface of an upper opening of a high pressure resistant glass pipe having a black paint strip arranged therein; the black paint absorbing the light energy and producing a plasma; generating an initial plasma explosion shock wave; transmitting the initial plasma explosion shock wave in the high pressure resistant glass pipe; generating a plasma cloud reaching a lower opening of a glass catheter; and, the shock wave pressure outputted embedding nanoparticles into a surface of a workpiece. The apparatus comprises the high pressure-resistant glass pipe with a zigzagging switchback shape or a spiral and inverted cone shape.
Abstract:
Disclosed is a formed article comprising a layer obtained by implanting ions of a hydrocarbon compound into a polyorganosiloxane compound-containing layer. Also disclosed are: a method of producing the formed article, the method comprising implanting ions of a hydrocarbon compound into a surface of a polyorganosiloxane compound-containing layer of a formed body that includes the polyorganosiloxane compound-containing layer in its surface; an electronic device member that includes the formed article; and an electronic device that includes the electronic device member. The present invention provides; a formed article which exhibits an excellent gas barrier capability, transparency, bendability, antistatic performance, and surface flatness; a method of producing the formed article, an electronic device member, and an electronic device.
Abstract:
A method of integrating a fluorine-based dielectric with a metallization scheme is described. The method includes forming a fluorine-based dielectric layer on a substrate, forming a metal-containing layer on the substrate, and adding a buffer layer or modifying a composition of the fluorine-based dielectric layer proximate an interface between the fluorine-based dielectric layer and the metal-containing layer.
Abstract:
According to the present invention, there is provided a plasma polymerization surface modification of a metal for enhancing its applicability for use in refrigerating and air conditioning such as in constructing heat exchanges, by using a DC discharge plasma, comprising the steps of: (a) positioning an anode electrode which is substantially of metal to be surface-modified and a cathode electrode in a chamber, (b) maintaining a pressure in the chamber at a predetermined vacuum level, (c) blowing a reaction gas composed of an unsaturated aliphatic hydrocarbon monomer gas or fluorine-containing monomer and silicon containing monomer gas at a predetermined pressure and a non-polymerizable gas at a predetermined pressure into the chamber, and (d) applying a voltage to the electrodes in order to obtain a DC discharge, whereby to obtain a plasma consisting of positive and negative ions and radicals generated from the unsaturated aliphatic hydrocarbon monomer gas and the non-polymerizable gas, and then forming a polymer with hydrophilicity or hydrophobicity on the surface of the anode electrode by plasma deposition, and there is also provided a plasma polymerization surface modification of a metal for enhancing its applicability for use in refrigerating and air conditioning such as in constructing heat exchanges, by using an RF plasma.