Abstract:
A device for purifying a fluid is disclosed. The aforesaid device comprises: (a) a passage adapted for conducting a flow of the fluid, said passage provided with input and output openings; (b) a plurality of elongate members coated with a titanium oxide disposed within the passage; (c) fastening means for mechanically fixating terminals of the elongate members within the passage; (d) at least one source of ultraviolet radiation adapted for illuminating the elongate members; (e) pumping means adapted for generating the fluid flow through the passage from the input opening to the output opening. The fastening means comprises at least two fasteners. Each fastener comprises two mutually orthogonal spaced apart pluralities of parallel rods. The rods are adapted for restricting lateral displacement of the elongate members.
Abstract:
A fluid treatment apparatus and related methods involving the use of replaceable treatment cartridges that include a treatment media, wherein the treatment cartridge is electrically enhanced to form regions of differing polarity within the cartridge. The treatment cartridge can include a pair of fixed polarity conductors that can be electrically connected to a power source so as to induce regions of differing polarity within the cartridge. The fluid treatment apparatus can be utilized to treat liquids including aqueous solutions as well as gases such as an air supply by exposing the fluid to the regions of differing polarity.
Abstract:
There is described a fluid treatment system which may which may be used with radiation sources that do not require a protective sleeve—e.g., excimer radiation sources. An advantage of the present fluid system treatment is that the radiation sources may be removed from the fluid treatment zone without necessarily having to shut down the fluid treatment system, remove the fluid, break the seals which retain fluid tightness, replace/service radiation source and than reverse the steps. Instead, the present fluid treatment system allows for service/replacement of the radiation sources in the fluid treatment zone during operation of the fluid treatment system.
Abstract:
In accordance with one embodiment, a connector for use in a fluid circuit includes a first housing having a hollow interior and an inlet and an outlet. The hollow interior includes first filter elements that are open at first and second ends thereof. The first ends of the first filter elements are in fluid communication with the inlet, while the second ends are in fluid communication with the outlet. The connector also includes a second housing that is in fluid communication with the hollow interior of the first housing. The second housing contains second filter elements that are arranged in a U-shape and are open at first and second ends thereof that are disposed proximate an outlet of the second housing. Fluid is conducted across the first filter elements to gain access to the second housing where the fluid is conducted across the second filter elements in order to exit to the second housing through the outlet.
Abstract:
Disclosed herein is a ballast water treatment device. The device includes a filtering unit filtering ballast water introduced into a ship using a filter, a vortex generating unit generating an artificial vortex in the ballast water filtered by the filtering unit, and an ultraviolet treatment unit having an ultraviolet lamp which sterilizes the ballast water discharged from the vortex generating unit using ultraviolet rays, thus preventing secondary contamination resulting from by-products, preventing a ballast tank from becoming contaminated, affording effective maintenance, and making it convenient to control. Further, an artificial vortex is formed in the ballast water when it is mixed, thus allowing a large quantity of ultraviolet rays to be radiated onto the ballast water passing through the ultraviolet treatment unit, therefore improving a sterilization effect.
Abstract:
An Ultraviolet-C (UVC) based portable water purification system employing a novel array of baffles increases the efficiency per unit energy of irradiating UVC light in the eradication of pathogens in the water. Closed loop feedback allows monitoring the application of UVC light power to ensure high levels of pathogen eradication. This system is capable of eradicating a wide range of waterborne bacteria, viruses, protozoa, helminthes, yeast, and mold found in natural freshwater sources worldwide. By adding pre- or post-filters, the system can remove harmful organic compounds, pesticides, inorganic compounds and heavy metals from the water. The system can also be used to eradicate pathogens in fluids other than water. As a feature of this invention, a communications systems that can reach geographically dispersed populations at low cost without the need to install costly wired communications infrastructure is combined with and powered by the water purification system. In one embodiment, a packet radio system is provided to create nodes in a wireless mesh communications system to provide voice, data, video and internet communications using an array of the water purifiers to create a wireless mesh network.
Abstract:
An ultraviolet (UV) water treatment device includes a housing with an inlet and an outlet. Water flows into the housing through the inlet, is exposed to the UV light, and the treated water then flows out of the housing through the outlet. The UV light source is inserted into a quartz tube from above so that the UV lamp can be changed without draining the system. A lower access port is provided in the bottom of the housing. The lower access port includes a seat that contains the lower end of the quartz tube, and further allows a user of the system to remove debris from a broken quartz tube quickly and safely.
Abstract:
The invention has two primary portions, a means to provide ultra-violet radiation and a means for adsorbing organic, inorganic and, optionally, pathogens. The means to provide ultra-violet radiation comprises ultra-violet light sources emitting, at least in part, in the spectrum around 265 nm. Light emitting devices, including light emitting diodes and other solid state light emitting devices are available in this range as well. The adsorbent portion comprises several different adsorbent media, including zeolites, titanium dioxide (TiO2), alumina, carbon, micro- and/or nano-porous carbon, other minerals with a naturally occurring micro- and/or nano-porous structure, synthetic, including organic, substrates with a micro- and/or nano-porous structure, and surface-modified variations of the preceding adsorbents.
Abstract:
A locking and disconnect system for use with an ultraviolet lighting system used in a waste management system. The system includes a light coupled to a housing having a cam receiving portion. The system further includes a cell for housing the light. The cell includes a cam locking mechanism engageable with the cam receiving portion of the housing.
Abstract:
Reverse osmosis filtration systems that are self contained and easily converted from above the counter use to below the counter use. The systems feature a simple construction, including a two piece manifold assembly to which filters, including a reverse osmosis filter, a product water storage tank and a control valve connect, all without separate fasteners. The manifold assembly provides all water connections within the system, and includes connections to connect to a water supply, a drain, two dispensers and to an auxiliary water storage tank. The system pressurizes squeeze water for product water dispensing, providing maximum efficiency, maximum storage capacity for a given tank size and maximum pressure for dispensing product water. Various embodiments are disclosed.