Abstract:
A fluorine-doped at least ternary silicate glass is disclosed which contains in particular TiO2. It can advantageously be used as a material having a low thermal expansion, wherein the slope of the coefficient of thermal expansion dCTE/T is ±2·109/K2 in the temperature range from −50° C. to 100° C. This material is particularly suited for micro-lithography, in particular for EUV-lithography.
Abstract translation:公开了一种掺氟的至少三元硅酸盐玻璃,其特别包含TiO 2。 它可以有利地用作具有低热膨胀性的材料,其中热膨胀系数dCTE / T的斜率在±2.10℃/ K 2℃的温度 范围为-50℃至100℃。该材料特别适用于微光刻,特别适用于EUV光刻。
Abstract:
This invention relates to production of high purity fused silica glass doped with titania using titanium chelates. Useful chelates include titanium acetylacetonate, and titanium ethyl acetoacetate among others.
Abstract:
The invention provides a process of obtaining a gradient index type of optical element with profiles of first and second metal component concentrations by the sol-gel method. The process of fabricating a gradient index type of optical element comprises steps of dipping a silicon component-containing wet gel prepared by the sol-gel method in a solution containing an alkoxide of at least one metal component selected from a first group consisting of Ti, Nb, Ta, and Zr or a derivative thereof to thereby impart to the wet gel a concentration gradient with a concentration of the first metal component decreasing from a periphery to a center of the wet gel, allowing at least one metal component selected from a second group consisting of Ba, La, Y, Gd, Sr, Ca, and Zn to be dissolved out of the wet gel to thereby impart to the wet gel a concentration gradient with a concentration of the second metal component increasing from the periphery to the center of the wet gel, and drying, and firing the wet gel.
Abstract:
A method of incorporating an additive or dopant oxide into a glass body produced by the oxidation of vaporous source material in a flame. The resultant glassy particles are deposited to form a porous preform having a uniform refractive index. During the consolidation process, the preform is subjected to an atmosphere including a drying agent which penetrates the interstices of the soot preform to simultaneously dry and dope the preform.
Abstract:
Method and apparatus for making vitreous silica of high purity including producing a melt of liquid silicon in a first chamber, mixing the liquid silicon with carbon dioxide in an upper zone of a second chamber to produce silicon monoxide, mixing the silicon monoxide with oxygen in a lower zone of the second chamber producing silicon dioxide in gaseous form, condensing the silicon dioxide on the wall of the second chamber, and withdrawing the resultant tube of vitreous silica from the lower end of the second chamber. The apparatus is lined with silica to prevent introduction of impurities. The liquid silicon is produced by mixing hydrogen and trichlorosilane.
Abstract:
A method for manufacturing a glass core rod and a cladding layer clothing the glass core rod applied successively or continuously by using a carbon dioxide gas laser. A refractory mandrel is heated by means of carbon dioxide gas laser irradiation and a mixed gas of oxygen and pure silicon tetrachloride vapor and a dopant compound vapor is ejected to the refractory mandrel so as to deposit silicon oxide and oxide of the dopant compound on the mandrel and to form a glass core by fusing it. Further heating is applied by irradiation by the carbon dioxide laser beam on the glass core and a mixed gas oxygen and pure silicon tetrachloride vapor and a dopant compound vapor or of oxygen gas and pure silicon tetrachloride vapor to deposit silicon oxide and oxide of the dopant compound or silicon oxide on the glass core to form a cladding layer of fused silica or fused silica containing the dopant. The preform thus formed by the glass core and the cladding is heated above the softening temperature of the preform so as to spin to form an optical fibre. The method uses laser beam heating which results in less degree of contaminating impurity and water content which might cause absorption and scattering of light also to manufacture an optical fiber having less variation at the boundary of the glass core and the cladding layer.
Abstract:
A method of forming an article, such as a low loss optical waveguide, by applying to a starting member a layer of glass soot to form a porous body. The porous body is then placed in a controlled environment in which a predetermined desired concentration of gases is maintained. The porous body is heated below the sintering temperature of the glass to permit entrapped gas to escape therefrom and the temperature is maintained until an equilibrium is reached between the partial pressure of the entrapped gas in the porous body and the partial pressure of the same gas in said environment. Thereafter, the porous body is further heated to at least the sintering temperature of the glass to sinter the soot particles and to form a consolidated dense member which may thereafter be formed into a desired shape while within said environment.
Abstract:
In order to reduce the degree of relaxation after an optical substrate has been compacted, in particular after a longer period, substrates (51) or reflective optical elements (50), in particular for EUV lithography, with substrates (51) of this type, are proposed. These substrates (51), which have a surface region (511) with a reflective coating (54), are characterised in that, at least near to the surface region (511), the titanium-doped quartz glass has a proportion of Si—O—O—Si bonds of at least 1*1016/cm3 and/or a proportion of Si—Si bonds of at least 1*1016/cm3 or, along a notional line (513) perpendicular to the surface region (511), over a length (517) of 500 nm or more, a hydrogen content of more than 5×1018 molecules/cm3.
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
Abstract:
A doping optimized single-mode optical fiber with ultra low attenuation includes a core layer and cladding layers. The cladding layers has an inner cladding layer surrounding the core layer, a trench cladding layer surrounding the inner cladding layer, an auxiliary outer cladding layer surrounding the trench cladding layer, and an outer cladding layer surrounding the auxiliary outer cladding layer. The content of fluorine in the core layer is ≤0.5 wt %, ΔGe≤0.12%, Δn1≤0.12%. The content of fluorine in the inner cladding layer is 0.5-1.5 wt %, Δn2≤−0.14%. The content of fluorine in the trench cladding layer is 1-3 wt %, Δn3≤−0.25%. The content of fluorine in the auxiliary outer cladding layer is 0.5-2 wt %, Δn4≤−0.14%. The outer cladding layer is a pure silicon dioxide glass layer and/or a metal-doped silicon dioxide glass layer.