Abstract:
A method and an apparatus for controlling a threshold voltage are provided. The method includes receiving noise event signals from a sensing core, the sensing core sensing a portion of a moving object, and generating an event signal. The method further includes determining a type of the noise event signals, determining a number of the noise event signals based on the type of the noise event signals, determining whether the number of the noise event signals satisfies a condition, and controlling a threshold voltage value corresponding to the noise event signals in response to the determining that the number of the noise event signals does not satisfy the condition.
Abstract:
In one example a method of deceiving an optical augmentation device includes receiving an interrogation beam at an optical system from the optical augmentation device, encoding the interrogation beam with a false signature mis-identifying the optical system, and retro-reflecting the encoded interrogation beam to the optical augmentation device, without retro-reflecting the original interrogation beam.
Abstract:
In accordance with a broad aspect of the present invention, a system and method are provided for monitoring and compensating thermal drift of the electronic elements in the sensor of a color measurement device, such as a spectrophotometer. Such a system and method involves, obtaining with a color sensor a plurality of measurements of a black trap with and without illumination across a range of temperatures and using those values to generate a correlation function that allows for the compensation of thermal drift in sample measurements.
Abstract:
The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2) and capable of adjusting ballistic deficit. The detection device (6) comprises a pre-amplifying unit (11) (such as, e.g., a charge-sensitive amplifier), a shaping unit (60) comprising a feedback discharge unit (13, I) (such as, e.g., a feedback resistor or a feedback current source), and a feedback discharge control unit (50) coupled to the feedback discharge unit (13, I). The feedback discharge control unit (50) is adapted to, e.g., adjust a resistance of a feedback resistor (and/or to adjust the current value of the feedback current source) if an electrical pulse generated by the shaping unit (60) does not exceed at least one energy comparison value (X1, X2, . . . , XN). The feedback discharge control unit (50) is adapted to not adjust the parameter of the feedback discharge unit (13, I) if the electrical pulse exceeds the at least one energy comparison value (X1, X2, . . . , XN). By tuning the feedback resistor operating point (or the feedback current source operating point), the ballistic deficit can be adjusted to a predefined expected value.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
An avalanche photodiode (APD) bias control method may include acquiring a photocurrent intensity voltage and generating a control signal by superposing the acquired photocurrent intensity voltage and a bias setting signal, wherein the control signal controls a voltage drop between an adjustable power supply output voltage and a voltage of the APD. The APB bias control method may further include adjusting the adjustable power supply output voltage and the bias setting signal simultaneously so that the voltage drop is within a target voltage drop range and the APD bias voltage approaches a bias voltage that corresponds to an APD optical input power. An avalanche photodiode (APD) bias controller and an avalanche photodiode (APD) photoelectric receiver are also provided.
Abstract:
An adjustment circuit for measuring an optical parameter is disclosed. The adjustment circuit includes an optical sensing module for detecting an optical signal and converting the detected optical signal into a voltage signal; an amplification module for amplifying the voltage signal; an A/D conversion module for converting the amplified voltage signal into a digital signal; a control module for analyzing the digital signal for generating an analyzed result; a signal generating module for outputting a frequency square wave signal according to the analyzed result; and an adjustment module for adjusting an amplification factor of the amplification module according to the frequency square wave signal. The circuit of the present disclosure is easy, and an automatic measurement can be implemented.
Abstract:
A method of calibrating an output of a light sensor for use in controlling a lighting system comprising at least one lighting device. The method comprises placing the lighting system into each of a plurality of discrete modes, each mode being configured to output a different respective configuration of light, wherein in operation each mode will automatically vary an output illumination level of the respective configuration based on the output of the light sensor in response to a changing light level in an environment being illuminated. The method further comprises performing a plurality of calibrations by determining a respective calibration setting for calibrating the output of the light sensor in each of the modes, and setting each mode to vary the output illumination level based on the output of the light sensor as calibrated by the respective calibration setting.
Abstract:
An apparatus (10) determining an optical property of an imaging system (12) includes an illumination system (20) directing electromagnetic radiation (18) onto an object plane (22) of the imaging system, a utilization detector (42) determining the optical property, an output coupling device (46), and an intensity sensor (50). The detector captures the radiation after it has traveled along a utilized beam path (45) extending to the utilization detector. The output coupling device couples sensor radiation (48) out of the utilized beam path and into a sensor beam path (49) that differs from the utilized beam path. The intensity sensor records an angularly resolved intensity distribution present at least at one point in the object plane of the optical imaging system, which intensity distribution reproduces the intensity of the electromagnetic radiation in dependence on the angle of incidence with respect to the object plane.
Abstract:
A photodetector integrated circuit (IC) having an electromagnetic interference (EMI) sensor integrated therein is provided for sensing EMI at the photodetector. Integrating the EMI sensor into the photodetector IC ensures that the EMI sensor is in proximity to the photodetector so that any EMI that is sensed is actually EMI to which the photodetector is exposed. The sensed EMI may then be used for a number of reasons, such as to determine the root cause of damage to circuitry of the system, to determine the point in time at which an EMI event occurred, or to trigger a warning when a determination is made that an EMI limit has been reached.