Abstract:
There is provided a small sized imaging apparatus which can measure with high accuracy a color distribution of a surface of an object, in which a light intensity distribution on a predetermined surface in a direction substantially perpendicular to an optical axis is uniform, and a change in an amount of light in a direction along the optical axis is reduced, and an illuminating unit which used in this imaging apparatus. (The imaging apparatus) Includes a light source section (210) which supplies illuminating light, a diffusing section (211) which diffuses by reflecting the illuminating light from the light source section (210), and aperture sections (212a and 212b) which allow to emerge diffused illuminating light, and the aperture sections (212a and 212b) has an aperture diameter D which allows the diffused illuminating light to emerge as a substantially parallel light.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum of a sample of the hair and analyzing a contribution of a plurality of natural hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere having a sampling port and an inner surface and a window disposed near the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source configured to project light onto the sample via the window and a light detector configured to analyze light reflected from the inner surface to produce the reflectance spectrum of the sample.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum of a sample of the hair and analyzing a contribution of a plurality of natural hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere having a sampling port and an inner surface and a window disposed near to the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source configured to project light onto the sample via the window and a light detector configured to analyze light reflected from the inner surface to produce the reflectance spectrum of the sample.
Abstract:
A colorimeter or color measuring device measures color of a sample or an object, and displays measurement value or values according to user defined index or indices, calculated by a user-defined formula. Data of the user-defined formula is read in from outside of the colorimeter and converted into a coded form which can be executed by a controller of the calorimeter. The data of the user-defined formula or the coded data is stored in the colorimeter. Accordingly, the colorimeter has good portability and convenience despite its capability of expressing the colors of various samples or objects by user-defined original index or indices.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed. Spectrometers and spectrophotometers embedded in printing and scanning and other type devices, as well as computer companion devices, scope-type devices and the like, also are disclosed. Data encoding based on such devices also may be implemented.
Abstract:
Low cost and form factor spectrometers are disclosed. A spectrometer comprises a substrate, a plurality of optical sensors (979), a plurality of spectral filters (977), an optical manifold (976) and one or more processing elements (980). The plurality of spectral filters (977) and the one or more processing elements (980) are mounted on the substrate. The spectral filters (977) are fixedly positioned over at least a group of the optical sensors (979) and fixedly positioned with respect to the substrate. An optical manifold (976) is fixedly positioned over the spectral filters (977). The optical manifold (976) has a plurality of exit ports and an entrance port, wherein light entering the entrance port is transmitted to an interior portion of the optical manifold (976) and a portion of the light is transmitted from the exit ports through some of the spectral filters (977). The spectrometers are disclosed embedded in printing and scanning devices, computer companion devices, scope-type devices and the like.
Abstract:
An improved process of matching the color of a paint to the pre-existing color of a vehicle is provided. The process includes the steps of exposing a photo-reactive film to the surface of the vehicle whose paint color is to be matched. Once exposed, pigments in the film are activated to mimic precisely the color of the vehicle. The pigments are then extracted, isolated and mixed with a neutral base paint solution, which is tinted by the pigments to match the color of the vehicle. The tinted and matched solution is used for painting or touch-up work on the vehicle.
Abstract:
A spectrophotometer measures the color properties of a sample by illuminating the sample with a light source. One or more light beams are sensed by an active pixel diode array where each of the beams are sensed by a different array of diodes in the active pixel sensor. Each of the diode arrays are formed on the same substrate by a CMOS process such that each diode array is automatically aligned to each other during formation. Subsequent mechanical alignment is, thus, eliminated.
Abstract:
A portable color measuring device is provided that includes a hand-holdable housing. The color measuring device is configured to receive an independently operable processing device that is mounted to the housing. The independently operable processing device is a portable general purpose computer that executes software applications to control the operation of the color measuring device and process color data. The color measuring device measures the color properties of a sample by illuminating the sample with a light source. The measured properties are processed and/or analyzed by the independently operable processing device and results are displayed to a user. Software applications reside on the independently operable processing device allowing software upgrades or modifications to be easily performed. New applications can be downloaded to the processing device or the processing device can be interchanged with a different processing device.
Abstract:
A sensor for measuring reflective, transmissive, or self-luminous samples, comprises a plurality of light sources, where each of the light sources emit light of a substantially different wavelength band spaced in the visible spectrum; a reference channel photodetector; a sample channel photodetector; an optical cap adapted to direct a first portion of the light emitted by each of the light sources to the reference channel photodetector, a reflector cone for directing a second portion of the light emitted by each of the light sources to the sample; and a receptor piece for directing the diffuse portion of the light reflected from the sample to the sample channel photodetector. Preferably, the reference channel and sample channel photodetectors are identical devices and are mounted back-to-back to share environmental characteristics, and in turn, minimize the variation between their respective responses. The sensor is preferably incorporated into a hand-held "mouse" device, which includes an area on its top surface for seating an index finger of the human hand. Positioned within this area is a pressure-activated switch that is operatively coupled to the sensor circuitry for performing the various readings. And the sensor is preferably mounted into the mouse device such that the focal aperture of the downward pointing reflector cone is in axial alignment with the pressure-activated switch. Accordingly, a user will be able to use the mouse to "point" with his or her index finger to an area of the sample surface, and will then simply press the switch using the same index finger.