Abstract:
The invention relates to spectrometer optics with a beam path from a beam source to a number of electro-optical sensors without spatial resolution, the beam path comprising an entry slot, a dispersive element, and a number of exit slots arranged on a focal curve, wherein furthermore: a first actuator for changing the angle of incidence ε between the beam from the entry slot to the dispersive element and from the normal to the dispersive element; a number of second actuators for moving the exit slots tangentially with respect to the focal curve or in a peripheral direction along the focal curve and a controller which is adapted to control the first actuator and the second actuators to carry out a calibration is provided.
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
A spectroscope of the present invention includes a concave diffraction grating which disperses incident light, an incident light introduction unit which introduces incident light into the concave diffraction grating, and an outgoing light receiving unit which receives outgoing light dispersed for different wavelengths by the concave diffraction grating. The spectroscope further includes an incident aperture which limits an incident angle of light emitted by the incident light introduction unit to the concave diffraction grating, and an outgoing aperture which limits an outgoing angle of outgoing light dispersed for different wavelengths by the concave diffraction grating to the light receiving unit. The spectroscope is constructed so that relatively rotational transfer of at least two out of the concave diffraction grating, the incident aperture and the outgoing apertures can be performed along a Rowland circle which the concave diffraction grating forms.
Abstract:
A chemical impedance detector having several electrodes situated on or across a dielectric layer of a substrate. The electrodes may be across or covered with a thin film polymer. Each electrode may have a set of finger-like electrodes. Each set of finger-like electrodes may be intermeshed, but not in contact, with another set of finger-like electrodes. The thin-film polymer may have a low dielectric constant and a high porous surface area. The chemical impedance detector may be incorporated in a micro fluid analyzer system.
Abstract:
An optical spectrometer having a multi-wafer structure. The structure may be fabricated with MEMS technology. The spectrometer may be integrated with a fluid analyzer. A reflective grating such as a diffraction or holographic grating situated on the circumference of a Rowland circle along with a point of light emission and a detector may be a configuration of the spectrometer. Some configurations may use an external light source where the light may be optically conveyed to the point of emission on the circle. There may be a Raman configuration where an interaction of light with a sample or an interactive film of a channel in a fluid analyzer is the point of light emission for the spectrometer. In some configurations of the spectrometer, the grating and/or the film may be reflective or transmissive.
Abstract:
In order to extend the available spectral range and to optimize spectral resolution while retaining a compact spectrometer setup, two diffraction gratings are operated with congruent focal curves in a Paschen-Runge geometry. The spectrometer features only one entrance slit and allows an adequate adaptation of the covered spectral range to the demands of analytical spectrometry. Apart from photomultiplier tubes commercial solid-state linear array sensors placed tangential at the Rowland circle are used for simultaneous detection of the spectrum. By employing angular cut cylindrical mirrors the radiation is deflected by 90% upward or downward in an alternating series. In this way two effects are achieved, an almost complete detection of the spectrum firstly and secondly a gain of intensity by focusing of radiation perpendicular to the plane of dispersion.
Abstract:
The invention concerns an optical system for use in spectrometry and/or endoscopy, in which at least one probe is exposed to directional radiation produced by a radiation source, the radiation emanating from the probe is led to a spectrometer, in particular a simultaneous spectrometer, and/or an imaging device. It is proposed that the optical system should be provided with at least one control device with an radiation inlet surface and a radiation outlet surface; the control device should be provided with control elements held by a frame and capable of being displaced from a first position in such a way that the radiation energy transferred from the radiation inlet surface to the radiation outlet surface can be controlled while leaving the radiation outlet aperture substantially unchanged. In addition, or alternatively, the optical system is provided with at least one wavelength selection unit which has at least one dispersion element for spectral splitting of the radiation passing through at least one inlet slit and impinging on the dispersion element; and with at least one optical waveguide. The dispersion element and/or a focusing element focus the spectrally split radiation onto a focal surface and the optical waveguide receives a predetermined range of spectrally split radiation in the focal surface.
Abstract:
A spectrometer provides a substantially simultaneous electronic output over a broad spectral range while maintaining a relatively high resolution. The spectrometer uses a fiber-optic transformer having an arcuate one-dimensional input region, associated with the image plane of a Rowland circle, and produces a rectangular two-dimensional output image, for illuminating the active area of a two-dimensional CCD sensor.
Abstract:
A spectrograph usable as a demultiplexer/detector in a wavelength division multiplexing optical system. The spectrograph comprises a planar waveguide and a detector array. The planar waveguide has a dispersive edge having an inwardly concave shape, an input edge, and a straight output edge. The dispersive edge has a reflective diffraction grating formed on it, the grating having a variable line spacing. An optical input signal comprising a plurality of different wavelength ranges enters the waveguide at the input edge, and travels through the waveguide and strikes the grating. The grating focuses the optical energy in each of the wavelength ranges at a focal spot at the output edge, the position of each focal spot being a function of wavelength. The detector array comprises a plurality of photodetectors positioned along a straight line, such that the photodetectors are positioned at the focal spots. Each photodetector therefore detects the optical energy in one of the input ranges. A stack of such planar waveguides may be assembled to form a multi-channel spectrograph.
Abstract:
A spectroanalytical system with radiation dispersing apparatus having structure for dispersing radiation into a spectrum for concurrent application to a plurality of exit ports; a plurality of radiation sensor channel circuits, each circuit being optically coupled to a corresponding exit port for monitoring radiation at that exit port; sample excitation apparatus for exciting sample material to be analyzed to spectroemissive levels for generating a beam of radiation for dispersion by the dispersion structure; and controller structure for triggering the excitation apparatus to excite the sample material and for generating a gating interval by the channel circuitry for accumulating radiation data during an interval that commences subsequent to application of maximum energy to the sample by the excitation apparatus.