Abstract:
In the present invention, a cathode for an x-ray tube is formed with a large area flat emitter. To reduce the aberrations to a minimum the emission area in the flat emitter has a non-rectangular shape and focusing pads arranged around the emitter. In an exemplary embodiment, the flat emitter has a non-rectilinear polygonal shape for an emission area on the emitter in order to increase the emission current from the emitter at standard voltage levels without the need to run the emitters at a higher temperature, add additional emitters to the cathode and/or to coat the emitters with a low work function material.
Abstract:
Embodiments include an X-ray cathode filament, filament system, process to manufacture the filament and process to use the filament, where the filament includes a planar substrate, such as of tungsten, having a top surface coated with a coating of carburized tungsten (e.g., W2C) and thoria (ThO2). A first electron beam is emitted from the coating through a thermionic effect at a first temperature, such as when the filament is heated to between 1700 and 1900 degrees Celsius by running an electrical current through the filament. At this temperature, a second electron beam may be caused by (1) a reaction that includes creating thorium (Th) in the coating, and (2) the thorium diffusing to uncoated surfaces of the substrate from which the second electron beam is emitted. The filament may also have slots forming a zipper shape, forming a square switchback shape, or forming a rectangular labyrinth shape to reduce the current required to heat the filament.
Abstract:
A radiation generating tube includes a cathode connected to an electron emitting member; an anode including a target; and an insulating tube disposed between the cathode and the anode to surround the electron emitting member. The insulating tube includes an electrical potential defining member at an intermediate portion of the insulating tube in a longitudinal axis direction of the insulating tube. The electrical potential defining member is electrically connected to an electrical potential defining unit. The potential of the electrical potential defining member is controlled to be higher than that of the cathode and lower than that of the anode. A boundary of the electrical potential defining member and the insulating tube does not face a portion of the anode exposed to the inside of the radiation generating tube.
Abstract:
Systems, methods, and devices with improved electrode configuration for downhole nuclear radiation generators are provided. For example, one embodiment of a nuclear radiation generator capable of downhole operation may include a charged particle source, a target material, and an acceleration column between the charged particle source and the target material. The acceleration column may include several electrodes shaped such that substantially no electrode material from the electrodes is sputtered onto an insulator surface of the acceleration column during normal downhole operation.
Abstract:
Cathode assembly for a long throw length x-ray tube. In one example embodiment, a cathode assembly for an x-ray tube includes an electron emitter, an acceleration region, and a drift region. The electron emitter includes a curved emitting surface configured to emit an electron beam having a y-dimension that is greater than an x-dimension at the electron emitter. The acceleration region is defined adjacent to the electron emitter. The acceleration region is configured such that when the electron beam propagates within the acceleration region, the electron beam accelerates in a z-direction substantially normal to a midpoint of the curved emitting surface. The drift region is defined between the acceleration region and an anode. The drift region is configured such that the combined lengths of the drift region and the acceleration region are sufficient for the y-dimension to be less than the x-dimension at the anode.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
A rotatable anode for an X-ray tube comprises a first unit (901) for being hit by a first electron beam, and at least a second unit (902) being hit by at least a second electron beam, the second unit being electrically isolated from the first. In addition, an X-ray system comprises the anode, a main cathode for generating an electron beam, and first electrical potential, and an auxiliary cathode for influencing a second electrical potential. The main cathode deflects the electron beam to heat the auxiliary cathode. Furthermore, a device determines electrical potential by detecting a point of impact of the electron beam onto the anode and/or by detecting an X-ray spectrum of radiation starting from the anode. The electron beam hits the first unit and is deflected, wherein the deflected beam hits the second unit the point of impact. The first unit and/or second unit emit radiation.
Abstract:
The present invention refers to an X-ray tube of the rotary-anode type which comprises at least one temporarily negatively biased auxiliary grid electrode (119) with an aperture through which an electron beam (115) emitted by a tube cathode's thermoionic electron emitter (111) can pass. As an alternative thereto, the auxiliary grid electrode (119) may also be positively biased so as to enhance electron emission from a thermoionic electron emitter (111). The auxiliary grid electrode may thereby be connected to a supply voltage UAUX of a controllable voltage supply unit by means of a feedthrough cable (120) serving as a feeding line for providing the main control grid (112) with a grid supply voltage UG.
Abstract:
A radiation generating tube includes a cathode connected to an electron emitting member; an anode including a target; and an insulating tube disposed between the cathode and the anode to surround the electron emitting member. The insulating tube includes an electrical potential defining member at an intermediate portion of the insulating tube in a longitudinal axis direction of the insulating tube. The electrical potential defining member is electrically connected to an electrical potential defining unit. The potential of the electrical potential defining member is controlled to be higher than that of the cathode and lower than that of the anode. A boundary of the electrical potential defining member and the insulating tube does not face a portion of the anode exposed to the inside of the radiation generating tube.
Abstract:
A substrate for field emitters uses carbon nanotubes (CNTs) on a conductive substrate, the CNTs being erected essentially perpendicular to the substrate and aligned. In a method to transfer a CNT forest from a first substrate to a second substrate, the second substrate is coated with adhesive and the peaks (tips) of the CNTs on the first substrate are embedded in the uncurred adhesive on the second substrate. After the adhesive cures, the CNTs are removed from the first substrate with the peaks anchored in the cured adhesive on the second substrate.