Abstract:
According to one embodiment, a printed circuit board includes a first dielectric layer, a circuit component mounted on the first dielectric layer, and a second dielectric layer. The first dielectric layer is provided with a via hole which opens at a surface thereof and in which a conductive layer is provided, and a conductive pattern connected electrically to the conductive layer of the via hole. The circuit component is provided with a bump at least a part of which is inserted in the via hole and bonded to an inner surface of the via hole. The second dielectric layer is formed provided with another conductive pattern and laminated to the first dielectric layer to cover the circuit component.
Abstract:
There is disclosed a wiring structure or the like capable of sufficiently improving a connection property between a body to be wired and a wiring pattern (layer) connected to the body to be wired. In a semiconductor-embedded substrate 1, conductive patterns 13 are formed on opposite surfaces of a core substrate 11, and a semiconductor device 14 is arranged in a resin layer 16 laminated on the core substrate 11. The resin layer 16 is provided with the conductive pattern 13 and bumps 14p of the semiconductor device 14, and via-holes 19a, 19b are formed through upper portions of the resin layer. In the via-holes 19a, 19b, via-hole electrode portions 23a, 23b are connected to the conductive pattern 13 and the bumps 14p of the semiconductor device 14. The via-hole electrode portions 23a, 23b are provided so that each via-hole electrode portion has a concave portion at an upper surface thereof and so that a side wall thereof including an edge portion of the concave portion does not come in contact with an inner wall of the via-hole 19a or 19b.
Abstract:
An apparatus and method for a microactuator having a bonding pad having a solder ball retainer to decrease instances of solder ball movement. The method provides a substrate for the microactuator. A conductive layer above the substrate is provided. A bonding pad having a solder ball retainer is provided and disposed above the conductive layer. The bonding pad having a solder ball retainer provides reduced instances of movement of a solder ball disposed therewithin prior to and during a reflow process performed on the solder ball.
Abstract:
In one embodiment, a method is provided. The method comprises filling a microvia formed in a bond pad with solder paste comprising solder balls of the first size; and coating the bond pad with solder paste comprising solder balls of the second size, wherein the second size is greater than the first size.
Abstract:
Highly reliable interconnections for microelectronic packaging. In one embodiment, dielectric layers in a build-up interconnect have a gradation in glass transition temperature; and the later applied dielectric layers are laminated at temperatures lower than the glass transition temperatures of the earlier applied dielectric layers. In one embodiment, the glass transition temperatures of earlier applied dielectric films in a build-up interconnect are increased through a thermosetting process to exceed the temperature for laminating the later applied dielectric films. In one embodiment, a polyimide material is formed with embedded catalysts to promote cross-linking after a film of the polyimide material is laminated (e.g., through photo-chemical or thermal degradation of the encapsulant of the catalysts). In one embodiment, the solder resist opening walls have a wettable layer generated through laser assisted seeding so that there is no gap between the solder resist opening walls and no underfill in the solder resist opening.
Abstract:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server or supercomputer embodiment is also described.
Abstract:
A method for assembly and packaging of one or more flip chip-configured semiconductor dice with an interposer substrate to form a flip chip-type semiconductor device assembly. The flip chip-type semiconductor device assembly includes a conductively bumped semiconductor die and an interposer substrate having a plurality of recesses formed therein. The semiconductor die is mounted to the interposer substrate with the conductive bumps disposed in the plurality of recesses so that the die face is adjacent the facing surface of the interposer substrate. One or more openings may be provided in an opposing surface of the interposer substrate which extend to the plurality of recesses and the conductive bumps disposed therein. Dielectric filler material may then be introduced through the one or more openings to the recesses and, optionally, between the semiconductor die and interposer substrate.
Abstract:
A display assembly having a display module to receive a display signal containing prescribed information, a main circuitry supporting substrate including a ground, a flexible circuitry supporting substrate module connected to the circuitry supporting substrate to process or transfer data for prescribed information from the circuit board to the display module, the flexible circuitry supporting substrate module having recessed conductive portions, and a conductive member connected to the flexible circuitry supporting substrate module to ground the flexible circuitry supporting substrate and the display module, the conductive member including conductive tape applied to the flexible circuitry supporting substrate module and conductive paste to connect recessed conductive portions of the flexible circuitry supporting substrate module to the conductive tape. The display assembly may be formed in a mobile terminal.
Abstract:
A depression is formed in a first surface of a printed wiring board. A through hole penetrates through the printed wiring board from the bottom surface of the depression to a second surface of the printed wiring board. The second surface is the opposite surface of the first surface. A terminal of an electronic component is received in the through hole. The terminal has the tip end protruding from the second surface of the printed wiring board. Solder is filled in the through hole. The tip end of the terminal is allowed to protrude from the second surface of the printed wiring board even when the terminal is shorter than the original thickness of the printed wiring board. It is not necessary to change the length of the terminal.
Abstract:
A laminating step includes a second step of laminating a second insulation layer on a conductive pattern last formed at a first step, roughening the surface of the laminated second insulation layer excluding a desired area, and forming a conductive layer on at least the desired area of the surface of the second insulation layer, and a processing step includes a removing step of removing an upper part of the area higher than the second insulation layer on the substrate obtained at the laminating step, and an exposing step of exposing a part of the area of a conductive pattern adjacent to the lower side of the second insulation layer.