Abstract:
A method for assembling an electronic component on a printed circuit board includes following steps. Firstly, a printed circuit board substrate including a central main portion and a peripheral unwanted portion is provided. Secondly, electrically conductive patterns and reinforcing patterns are formed on the main portion and the unwanted portion respectively. Thirdly, an electronic component is mounted on the main portion and electrically connected with the electrically conductive patterns. Fifthly, the unwanted portion is removed.
Abstract:
A circuit board includes a plurality of differential signal line pairs, and a plurality of electromagnetic bandgap (EBG) patterns, each configured to be disposed to overlap the plurality of differential signal line pairs, wherein the EBG patterns are electrically insulated from the differential signal line pairs.
Abstract:
Disclosed are an electromagnetic bandgap structure and a printed circuit board. In accordance with an embodiment of the present invention, the electromagnetic bandgap structure can include a dielectric layer; a plurality of conductive plates; a stitching via, configured to pass through the dielectric layer and have a part electrically connecting the conductive plates to each other by connecting through a planar surface that is different from a planar surface of the conductive plates, and a through via. Here, the dielectric layer, the conductive plates and the stitching via can be placed between any two conductive layers, and the through via can be configured to pass through a clearance hole formed in the conductive layer and electrically connect the two conductive layers to each other.
Abstract:
A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on a side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5. The stress relaxation member 4 is formed of an aluminum plate 10 having a plurality of through holes 9 formed therein, and the through holes 9 serve as stress-absorbing spaces. The stress relaxation member 4 is brazed to the metal layer 7 of the insulating substrate 3 and to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
Abstract:
In a printed circuit board and its heat dissipating metal surface layout, a layer of copper foil is coated onto the printed circuit board for dissipating heat, and the surface of the copper foil is covered by an insulating coating, and a bare copper is formed on the surface of copper foil which is not covered by the insulating coating, and the bare copper is arranged in a cross shape, or in the shape of “#”, so that when the printed circuit board goes through a soldering furnace, the cohesion of solder is even instead of aggregating at a same position or the center, so as to obtain a larger protruding area and facilitate dissipating heat and transmitting current.
Abstract:
A ground pattern includes a plurality of integrally formed first to third ground lines. A plurality of first ground lines are arranged parallel to one another at equal intervals. A plurality of second ground lines are arranged parallel to one another at equal intervals between adjacent ones of the first ground lines. A plurality of third ground lines are arranged parallel to one another at equal intervals between adjacent ones of the first ground lines at a predetermined angle with respect to the second ground lines. The third ground lines each connect one end of one adjacent second ground line with the other end of another adjacent second ground line. The ground lines form triangular openings.
Abstract:
A grounding device for reducing electromagnetic interference (EMI) on a printed circuit board (PCB) includes a grounded portion formed on the PCB, a threaded hole defined in the PCB, and a connecting member. The grounded portion is a part of a grounding layer of the PCB and with high impedance. The threaded hole is grounded and with low impedance. The connecting member includes a first connecting tab and a second connecting tab separately formed at opposite ends thereof. The first connecting tab is electrically connected with the threaded hole via a screw. The second connecting end resiliently abuts against the grounded portion of the PCB.
Abstract:
Fundamental interconnect systems for connecting high-speed electronics elements are provided. The interconnect systems consists of the signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, and the ground plane. The signal line could be for example, microstripline, strip line, coplanar line, single ended or differential pairs. The interconnect system can be used for on-chip interconnects or can also be used for off-chip interconnects (chip-to-chip interconnects). The fundamental techniques provided in this invention can also be used for high-speed connectors and high-speed cables. More over, this fundamental technology is also used for the high sped die package, high speed connector, and high speed cables where conventional manufacturing technology can be used and yet to increase the bandwidth of the interconnects.