Abstract:
A method for depositing a coating comprising a polymer and impermeable dispersed solid on a substrate, comprising the following steps: discharging at least one impermeable dispersed solid in dry powder form through a first orifice; discharging at least one polymer in dry powder form through a second orifice; depositing the polymer and/or impermeable dispersed solid particles onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solid and/or polymer particles, thereby forming said coating; and sintering said coating under conditions that do not disrupt the activity and/or function of the substrate. A similar method is provided for depositing a coating comprising a hydrophobic polymer and a water-vapor-trapping material on a substrate.
Abstract:
A method for edge sealing a fiber-reinforced component formed from a carbon fiber-reinforced thermoplastic or duroplastic plastic material includes electrostatic coating of at least one section of an edge of the component with a thermoplastic powder so as to form a powder coating; and fusing and cross-linking the powder coating in a furnace so as to create a smooth edge seal.
Abstract:
A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
Abstract:
Methods for powder coating that include applying a powder coating composition to a substrate via an electrostatic gun. The powder coating composition includes a mixture of two or more materials having different densities, such as a mixture of aerogel particles and fluoropolymer-containing particles. The electrostatic gun can have a high-voltage generator that generates a negative polarity voltage between about 0 KV and about 100 KV during application of the powder coating composition, and the electrostatic gun can have a round spray nozzle. Methods of making fuser members using such powder coating methods, fuser members prepared by such methods, and methods of preparing low gloss images using such fuser members.
Abstract:
A method for manufacturing an electret filter element includes preparing fibers and producing, by a spray device, a spray mist of fluid droplets which include an electrical charge formed by an electric field between detaching fluid droplets and a counter-electrode. The fibers are passed through the spray mist so as to wet the fibers with the fluid droplets. The fibers are laid down to form a fibrous layer.
Abstract:
The invention relates to a bonding product suitable as a carrier for medicinal substances and to the compound derived therefrom that carries medicinal substances. The invention further relates to a process and device for preparing such bonding products and compounds. Further, the invention relates to a pharmaceutical composition containing such bonding products and compounds, and to the use thereof for preparing an infusible medicament for treating a disease.
Abstract:
The invention relates to a coating method for coating a component surface (4) with a coating agent, in particular for painting a motor vehicle body component with a paint, having the following steps: • emitting a spray jet (1) of the coating agent onto the component surface (4) of the component to be coated by means of an atomizer (2), said spray jet (1) having a main axis (5) and having an asymmetry with respect to the main axis (5) such that the spray jet (1) generates a spray pattern with a corresponding asymmetry on the component surface (4), and • at least partially compensating for the asymmetry of the spray jet (1) such that the asymmetry of the resulting spray pattern on the component surface (4) is reduced. The invention further relates to a corresponding coating device.
Abstract:
This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
Abstract:
Prepping a surface entails entraining a coating particle into a fluid stream, directing the fluid stream containing the coating particle at the surface to be prepped to thereby prep the surface using the coating particle. The prepped surface can then be coated using the same or substantially similar coating particle. This technique can be used with a continuous airjet, a forced pulsed airjet, a continuous waterjet or a forced pulsed waterjet as the carrier stream. This invention solves the problem of foreign blasting particles becoming embedded in the atomic matrix of the surface to be prepped, which can result in unpredictable behavior of the surface properties and even catastrophic failure.
Abstract:
A multiplexed emitter source distributor electrode, a related multiplexed electrospray nozzle, a related multiplexed electrospray apparatus and a related coating method that uses the multiplexed electrospray apparatus are all predicated upon at least one of: (1) a linear emitter source density greater than about 15 emitter sources per centimeter; and (2) an area emitter source density greater than about 225 emitter sources per square centimeter. The distributor electrode comprises other than a silicon material (i.e., a metal, metal alloy, ceramic or polymer material). The distributor electrode may be fabricated using a computerized numerical control method that provides the coating method with enhanced uniformity. The nozzle and the apparatus may also use a stepped slotted extractor electrode.