Abstract:
Electrostatic deposition of high performance powdered materials onto gas turbine surfaces. The process also includes post-deposition thermal staging of the deposited powder to provide a durable coating that will satisfy the demands of turbine engine operation. The process envisions application of organic-based powdered materials, glass/ceramic powdered materials and metal-based powdered materials and combinations thereof using electrostatic techniques to components exposed to low temperature operations, such as may be found in the front section of a gas turbine engine or to the exterior portions of an aircraft engine, and metal-containing glass ceramics, glass-ceramic materials, or materials that can be transformed into glass ceramic materials, when applied to components exposed to high temperature operations, such as may be found in the turbine and exhaust sections of a gas turbine engine or the flaps of an aircraft.
Abstract:
The interior surface of one or more walls/ceiling of the salt room is composed of inner, intermediate and outer layers. In the salt room, the salt is attached to the interior surfaces as an outer layer with an underlying intermediate layer containing salt and adhesive agent and acting as a binding agent. A binding agent is spread onto the interior surfaces of the walls of the salt room on top of the moisture insulator. Into the binding agent are embedded salt granules, after which to the binding agent surfaces containing salt granules an adhesive layer is added, which penetrates into the binding agent and attaches to the salt granules. Salt is spread on the adhesive layer as a porous coating, wherein the adhesive agent holds on to the salt layer in the binding agent surface.
Abstract:
An apparatus for and method of depositing a polymeric film on a substrate (5), the apparatus comprising: a delivery unit (7, 8) for delivering an aerosol spray comprising aerosol droplets of a liquid precursor comprising a polymeric phase to the substrate, the polymeric phase comprising a polymeric material and at least one solvent; a heating unit (15) for at least heating an environment such as at least partially to evaporate the at least one solvent of the polymeric phase prior to the aerosol droplets depositing on the substrate; and an electrostatic field generation unit (9) for generating an electrostatic field between the delivery unit and the substrate, and electrostatically charging the aerosol droplets such that the aerosol droplets are electrostatically attracted to the substrate.
Abstract:
A graphite-silicon carbide composite comprises a graphite substrate and a silicon carbide layer formed thereon and comprising silicon carbide particles in fused and contact bonded state. The composite has excellent oxidation resistance and finds a wide range of application as heat resistant material. The method of forming a silicon carbide layer on graphite surface is simple and consistent.
Abstract:
An example quantum dot (QD) device comprises a QD layer on a substrate, and may be fabricated by aerosol deposition, for example by mist deposition. An example approach includes providing a liquid precursor including QDs dispersed in a liquid carrier, generating a mist of droplets of the liquid precursor, directing the droplets towards the substrate so as to form a liquid precursor film on the substrate, and removing the liquid carrier from the liquid precursor film to form the quantum dot layer on the substrate. Example devices include multi-color QD-LED (light emitting diode) displays, and other devices.
Abstract:
A process for the deposition of particulate material of a desired substance on a surface includes: (i) charging a particle formation vessel with a compressed fluid; (ii) introducing into the particle formation vessel a first feed stream comprising a solvent and the desired substance dissolved therein and a second feed stream comprising the compressed fluid, wherein the desired substance is less soluble in the compressed fluid relative to its solubility in the solvent and the solvent is soluble in the compressed fluid, and wherein the first feed stream is dispersed in the compressed fluid, allowing extraction of the solvent into the compressed fluid and precipitation of particles of the desired substance; (iii) exhausting compressed fluid, solvent and the desired substance from the particle formation vessel at a rate substantially equal to the rate of addition of such components to the vessel in step (ii) through a restrictive passage to a lower pressure whereby the compressed fluid is transformed to a gaseous state and a flow of particles of the desired substance is formed; and (iv) exposing a receiver surface to the exhausted flow of particles of the desired substance and depositing a uniform layer of particles on the receiver surface.
Abstract:
The invention provides processes for coating the surface of substrates such as a sheet, film, foam, fiber, etc., with a curable liquid resin or solution of curable resin, then in one embodiment, stably attaching a superabsorbent polymeric powder to such resin, and then curing the resin to form a coated superabsorbent product. Such substrates may include polymeric materials. Other process embodiments utilizing curable and thermoplastic resinous powders may be used instead of curable liquid resins and resulting products are included in the invention. The coated product has reduced particle agglomeration and particle loss due to the curing or melting steps. The thin, superabsorbent powder adhered, films may be used as an absorbent core for a wide variety of absorbent products. The product can be interposed between sheets to form disposable absorbent products such as diapers, bandages, water and nutrient retention elements, erosion control devices and elements thereof, etc. or used on one side to form cleaning products.
Abstract:
A medical implant has a microscopically rough outer coating that serves to bond the implant to animal tissue. The coating is applied to the implant by physical vapor deposition. The coating preferable is applied via a generally oblique coating flux or a low energy coating flux. In some embodiments, the coating has pores. The pores can contain a drug, which can diffuse over a period of time. The coating may be partially nonporous to protect the implant from corrosion. The coating can have an outer porous layer that can bond with animal tissue easily.
Abstract:
A seat belt device part includes a substrate and a coating disposed on a portion of the substrate. The coating is configured to contact a seat belt webbing. The coating is formed of a material configured to be deposited on the substrate by a powder coating process.
Abstract:
A solder jet apparatus is disclosed. The solder jet apparatus is a continuous mode solder jet that includes a blanking system and raster scan system. The use of the raster scan and blanking systems allows for a continuous stream of solder to be placed anywhere on the surface in any desired X-Y plane. This allows for greater accuracy as well as greater product throughput. Additionally, with the raster scan system, repairs to existing soldered surfaces can be quickly and easily performed using a map of the defects for directing the solder to the defects.