Abstract:
The invention relates to a system and a method for optical measurement of a target, wherein the target is illuminated, either actively illuminated, reflecting ambient light, or self illuminating, and a measurement light beam received from the target or through it is detected. The prior art optical measurement systems generally include mechanical filter wheels and photomultiplier tubes, which cause the equipment to be expensive, large-sized and often not sufficiently accurate and stable. The objective of the invention is achieved with a solution, in which the illuminating light beam and/or measurement light beam is led through a Fabry-Perot interferometeror a set of two or more Fabry-Perot Interferometers, and the Fabry-Perot interferometer or a set of two or more Fabry-Perot Interferometersis controlled into different modes during the measurement of a single target. The invention can be applied inoptical measurements where, for example, reflectance, absorption of fluorescence of the target is measured.
Abstract:
An automated adaptive optics and laser projection system is described. The automated adaptive optics and laser projection system includes an adaptive optics system and a compact laser projection system with related laser guidance programming used to correct atmospheric distortion induced on light received by a telescope. Control of the automated adaptive optics and laser projection system is designed in a modular manner in order to facilitate replication of the system to be used with a variety of different telescopes. Related methods are also described.
Abstract:
In accordance with an example embodiment a method, apparatus and computer program product are provided. The method comprises filtering incident light by an IR cut-off filter to generate filtered light. The IR cut-off filter comprises a plurality of pixels with pass-band characteristics for visible light wavelengths and is configured to perform stop-band attenuation of near infrared (NIR) wavelengths. The stop-band attenuation is configured to vary based on spatial location of pixels within the IR cut-off filter. The filtered light received from the IR cut-off filter is sensed by the image sensor to generate sensed light. A baseband signal and a modulated NIR signal are determined by performing transformation of the sensed light. A NIR spectrum associated with the incident light is determined by demodulating the modulated NIR signal. A visible spectrum associated with the incident light is determined based on the NIR spectrum and the baseband signal.
Abstract:
A spectrophotometer includes a fixed substrate having a fixed reflecting film, a movable substrate having a movable reflecting film, a tunable interference filter having a static actuator changing the gap distance of an inter-reflecting film gap between the fixed reflecting film and the movable reflecting film, a detecting section detecting the light intensity of a light extracted by the tunable interference filter, a voltage setting section and a voltage controlling section that apply a continuously-varying analog voltage to the static actuator, a voltage monitoring section monitoring the voltage applied to the static actuator, and a light intensity obtaining section obtaining the light intensity detected by the detecting section when the voltage monitored by the voltage monitoring section becomes a predetermined voltage to be measured.
Abstract:
An infrared (IR) spectrometer (20) for IR spectroscopic investigation of a test sample (1) in a first wavenumber range WB1, comprising a sample container (1a) for the test sample (1), wherein the sample container (1a) is transparent to IR radiation in the first wavenumber range WB1, and wherein the IR spectrometer (20) comprises a measuring device for determining the temperature of the test sample (1), is characterized in that the measuring device comprises an IR sensor (2) which measures, without contact, the intensity of the IR radiation emitted by the sample container (1a), and the sample container (1a) is opaque to IR radiation in the second wavenumber range WB2. A simple and reliable measurement of the temperature of a test sample in an IR spectrometer is thereby enabled.
Abstract:
A backpack laser-induced breakdown spectroscopy LIBS system to provide rapid in-field elemental analysis of environmental samples important to the safeguarding of special nuclear materials.
Abstract:
The optical analysis system (20) for determining an amplitude of a principal component of an optical signal comprises a multivariate optical element (10) for reflecting the optical signal and thereby weighing the optical signal by a spectral weighing function, and a detector (9, 9P, 9N) for detecting the weighed optical signal. The optical analysis system (20) may further comprise a dispersive element (2) for spectrally dispersing the optical signal, the multivariate optical element being arranged to receive the dispersed optical signal. The blood analysis system (40) comprises the optical analysis system (20) according to the invention.
Abstract:
A semiconductor detector has a tunable spectral response. These detectors may be used with processing techniques that permit the creation of “synthetic” sensors that have spectral responses that are beyond the spectral responses attainable by the underlying detectors. For example, the processing techniques may permit continuous and independent tuning of both the center wavelength and the spectral resolution of the synthesized spectral response. Other processing techniques can also generate responses that are matched to specific target signatures.
Abstract:
A spectrometer (10) includes a two-dimensional array of modulatable micro-mirrors (18), a detector (20), and an analyzer (22). The array of micro-mirrors is positioned for receiving individual radiation components forming a part of an input radiation source. The micro-mirrors are modulated at different modulation rates in order to reflect individual radiation components therefrom at known and different modulation rates. The micro-mirror array combines a number of the reflected individual radiation components and reflects the combined components to the detector. The detector is oriented to receive the combined radiation components reflected from the array and is operable to create an output signal representative thereof. The analyzer is operably coupled with the detector to receive the output signal and to analyze at least some of the individual radiation components making up the combined reflection. By using a micro-mirror that receives individual radiation components and then modulates the radiation components at different rates, all of the radiation components can be focused onto a single detector to maximize the signal-to-noise ratio of the detector. A variable band pass filter spectrometer, variable band reject filter spectrometer, variable multiple band pass filter spectrometer, and a variable multiple band reject filter spectrometer utilizing the same invention are also disclosed.
Abstract:
The invention relates to a method of measuring the wavelength of an optical signal such as a light beam. The optical signal is directed toward a detector where its intensity is detected and stored. Several optical elements each having a different wavelength dependence are moved into the path of the optical beam one at a time and for each intensity is detected and stored. The wavelength of the optical signal is then approximately determined based upon the ratio of the detected intensity of the optical signal in the absence of any optical elements and the detected intensities of the optical signal in the presence of each optical element.