Abstract:
The present subject matter at-least provides a system for measurement of topography of specular surfaces. The system comprises a set of indexed light-sources and a controller configured to drive the set of light-sources for irradiating a specular-surface by sequentially illuminating a plurality of sub-sets of the light-sources in accordance with a pre-defined encoding criteria. Further, at least one camera is provided to capture reflected light-radiation from the specular-surface and thereby generate a plurality of images in accordance with the sequential-illumination, such that each of the generated-image corresponds to a particular sub-set of illuminated light sources. Further, a processing system is configured to process each generated image in accordance with an image-processing criteria specific to the encoding-criteria to determine one or more index of light-sources and thereby identify the light-sources within the images; and determine topography of the specular-surface at-least based on calculation of spatial-coordinates and the determined identity of each light-source.
Abstract:
A method for non-contact measurement of stress in a thin-film deposited on a substrate is disclosed. The method may include measuring first topography data of a substrate having a thin-film deposited thereupon. The method may also include comparing the first topography data with second topography data of the substrate that is measured prior to thin-film deposition. The method may further include obtaining a vertical displacement of the substrate based on the comparison between the first topography data and the second topography data. The method may also include detecting a stress value in the thin-film deposited on the substrate based on a fourth-order polynomial equation and the vertical displacement.
Abstract:
A method for non-contact measurement of stress in a thin-film deposited on a substrate is disclosed. The method may include measuring first topography data of a substrate having a thin-film deposited thereupon. The method may also include comparing the first topography data with second topography data of the substrate that is measured prior to thin-film deposition. The method may further include obtaining a vertical displacement of the substrate based on the comparison between the first topography data and the second topography data. The method may also include detecting a stress value in the thin-film deposited on the substrate based on a fourth-order polynomial equation and the vertical displacement.
Abstract:
The present subject matter at-least provides an apparatus for characterization of a slab of a material. The apparatus comprises a plurality of frequency-domain optical-coherence tomography (FD-OCT) probes configured for irradiating the slab of material at at-least one location, and detecting radiation reflected from the slab of material or transmitted there-through. Further, a centralized actuation-mechanism is connected to the plurality of OCT probes for simultaneously actuating one or more elements in each of said OCT probes to at-least cause a synchronized detection of the radiation from the slab of material. A spectral-analysis module is provided for analyzing at least an interference-pattern with respect to each of said OCT probes to thereby determine at least one of thickness and topography of the slab of the material.
Abstract:
A system for inspecting a slab of material may include a polarization maintaining single mode optical-fiber, a linearly polarized broadband light-source configured to emit a polarized-light over the optical fiber, a beam-assembly configured to receive the light over the optical fiber and direct the light toward a slab of material; a polarization-rotator for controlling polarization of the light directed to the slab of material from the beam-assembly; a computer-controlled etalon filter configured to receive the light over the optical fiber, filter the light, and direct the light over the optical fiber; and a computer-controlled spectrometer configured to receive the light over the optical fiber after the light has been filtered by the etalon filter and after the light has been reflected from or transmitted through the slab of material and spectrally analyze the light.
Abstract:
Inspecting a multilayer sample. In one example embodiment, a method may include receiving, at a beam splitter, light and splitting the light into first and second portions; combining, at the beam splitter, the first portion of the light after being reflected from a multilayer sample and the second portion of the light after being reflected from a reflector; receiving, at a computer-controlled system for analyzing Fabry-Perot fringes, the combined light and spectrally analyzing the combined light to determine a value of a total power impinging a slit of the system for analyzing Fabry-Perot fringes; determining an optical path difference (OPD); recording an interferogram that plots the value versus the OPD for the OPD; performing the previous acts of the method one or more additional times with a different OPD; and using the interferogram for each of the different OPDs to determine the thicknesses and order of the layers of the multilayer sample.
Abstract:
According to an aspect of one or more embodiments, a system for inspecting a slab of material may include a single mode optical fiber, a broadband light source configured to emit light over the optical fiber, a beam assembly configured to receive the light over the optical fiber and direct the light toward a slab of material, a computer-controlled etalon filter configured to receive the light over the optical fiber either before the light is directed toward the slab of material or after the light has been reflected from or transmitted through the slab of material, filter the light, and direct the light over the optical fiber, and a computer-controlled spectrometer configured to receive the light over the optical fiber after the light has been filtered by the etalon filter and after the light has been reflected from or transmitted through the slab of material and spectrally analyze the light.
Abstract:
According to an aspect of an embodiment, a method may include measuring, based on interferometry, a film thickness of a surface film of a semiconductor wafer at a plurality of locations that are along a scanline of the wafer. The method may also include measuring, based on interferometry, a substrate thickness of a substrate of the semiconductor wafer at the plurality of locations. Moreover, the method may include measuring, based on an optical measurement technique, a curvature of the semiconductor wafer along the scanline. In addition, the method may include determining a stress of the surface film along the scanline based on the measured film thickness at the plurality of locations, based on the measured substrate thickness at the plurality of locations, and based on the measured curvature along the scanline.
Abstract:
A method of providing a sensor-based gaming system for an avatar to represent a player in a virtual environment includes wirelessly receiving a set of measurements describing attributes of the player. The method includes generating a player profile associated with the player and including an avatar depicting a virtual embodiment of the player in a virtual world. The method includes receiving sensor data from sensors. The sensor data describes a change in a real world position of the player. The method includes determining an estimate of a player movement. The method includes determining a difference between a screen position of the avatar in the virtual world and the real world position of the player in the real world. The method includes generating avatar image data representative of movement of the avatar corresponding to movement of the player.
Abstract:
A method for non-contact measurement of stress in a thin-film deposited on a substrate is disclosed. The method may include measuring first topography data of a substrate having a thin-film deposited thereupon. The method may also include comparing the first topography data with second topography data of the substrate that is measured prior to thin-film deposition. The method may further include obtaining a vertical displacement of the substrate based on the comparison between the first topography data and the second topography data. The method may also include detecting a stress value in the thin-film deposited on the substrate based on a fourth-order polynomial equation and the vertical displacement.