Abstract:
The invention relates to a method of manufacturing a I-III-VI2 layer with photovoltaic properties, comprising: deposition of a metal on a substrate to form a contact layer, deposition of a precursor of the photovoltaic layer, on the contact layer, and heat treatment of the precursor with an addition of element VI to form the I-III-VI2 layer. The element VI usually diffuses into the contact layer (MO) during the heat treatment and combines with the metal to form a superficial layer (SUP) on the contact layer.In the method of the invention, the metal deposition comprises a step during which an additional element is added to the metal to form a compound (MO-EA), in the contact layer, acting as a barrier to the diffusion of the element VI, which allows precisely controlling the properties of the superficial layer, particularly its thickness.
Abstract:
The invention relates to a method of manufacturing a I-III-VI2 layer with photovoltaic properties, comprising: deposition of a metal on a substrate to form a contact layer, deposition of a precursor of the photovoltaic layer, on the contact layer, and heat treatment of the precursor with an addition of element VI to form the layer. The element VI usually diffuses into the contact layer (MO) during the heat treatment and combines with the metal to form a superficial layer (SUP) on the contact layer. In the method of the invention, the metal deposition comprises a step during which an additional element is added to the metal to form a compound (MO-EA), in the contact layer, acting as a barrier to the diffusion of the element VI, which allows precisely controlling the properties of the superficial layer, particularly its thickness.
Abstract:
A method for producing a thin-film solar cell on an initial substrate, the thin-film solar cell being removable from the initial substrate, the thin-film solar cell including a rear metal layer and a thin-film stack including a p-n junction, the method including depositing the rear metal layer on the initial substrate by sputtering; forming the thin-film stack on the rear metal layer, wherein the power, temperature and pressure used to deposit the rear metal layer are chosen so as to introduce shear stress into the rear metal layer in a controlled manner.
Abstract:
A photoreflectance device for characterizing a rough surface includes a pump beam emitter to emit a pump beam; a probe beam emitter to emit a probe beam; a detector to detect the probe beam reflected by the surface; an integrating sphere to collect the probe beam reflected by the surface, the integrating sphere including: a first output connected to the detector, and disposed so as to receive a majority of the probe beam reflected by the surface; a second output arranged so as to receive a majority of the pump beam reflected by the surface.
Abstract:
A photoreflectance device for characterizing a rough surface includes a pump beam emitter to emit a pump beam; a probe beam emitter to emit a probe beam; a detector to detect the probe beam reflected by the surface; an integrating sphere to collect the probe beam reflected by the surface, the integrating sphere including: a first output connected to the detector, and disposed so as to receive a majority of the probe beam reflected by the surface; a second output arranged so as to receive a majority of the pump beam reflected by the surface.
Abstract:
A process for forming a semiconductor layer, especially with a view to photovoltaic applications, and more particularly to a process for forming a semiconductor layer of I-III-VI2 type by heat treatment and chalcogenization of a metallic precursor of I-III type, the process comprising: a heating step under an inert atmosphere during which the temperature increases uniformly up to a first temperature of between 460° C. and 540° C., in order to enable the densification of the metallic precursor, and a chalcogenization step beginning at said first temperature and during which the temperature continues to increase up to a second temperature, a stabilization temperature, of between 550° C. and 600° C., in order to enable the formation of the semiconductor layer. The formation of a semiconductor layer, or equivalently of an absorber, having a gain in conversion efficiency of around 4%, is thus advantageously achieved.
Abstract:
A treatment of thin layers for forming a connection of a photovoltaic cell including the thin layers, which includes a first layer, having photovoltaic properties, deposited on a second layer, and the second layer, which is a metal contact layer, deposited on a substrate, the treatment including etching, in the first layer, at least one first trench having a first width so as to expose the second layer; and etching, in the first trench, a second trench so as to expose the substrate, the second trench having a second width less than the first width.
Abstract:
A treatment of thin layers for forming a connection of a photovoltaic cell including the thin layers, which includes a first layer, having photovoltaic properties, deposited on a second layer, and the second layer, which is a metal contact layer, deposited on a substrate, the treatment including etching, in the first layer, at least one first trench having a first width so as to expose the second layer; and etching, in the first trench, a second trench so as to expose the substrate, the second trench having a second width less than the first width.