Abstract:
A vacuum ultraviolet (VUV) photon source includes a body, a VUV window, electrodes disposed on the body outside an interior thereof, and a dielectric barrier between the electrodes. A method for generating VUV photons includes generating a dielectric barrier discharge (DBD) in an interior of a photon source by applying a periodic voltage between a first electrode and a second electrode separated by a dielectric barrier, wherein the DBD produces excimers from a gas in a gap between the electrodes, and transmitting VUV photons through a window of the photon source.
Abstract:
An ion guide generates a radio frequency (RF) field to radially confine ions to an ion beam along a guide axis as the ions are transmitted through the ion guide. The effective potential of the RF field has potential wells distributed along the guide axis. The RF field is constructed such that the potential wells move in an axial direction toward an exit end of the ion guide.
Abstract:
A vacuum ultraviolet (VUV) photon source includes a body, a VUV window, electrodes disposed on the body outside an interior thereof, and a dielectric barrier between the electrodes. A method for generating VUV photons includes generating a dielectric barrier discharge (DBD) in an interior of a photon source by applying a periodic voltage between a first electrode and a second electrode separated by a dielectric barrier, wherein the DBD produces excimers from a gas in a gap between the electrodes, and transmitting VUV photons through a window of the photon source.
Abstract:
An ion guide generates a radio frequency (RF) field to radially confine ions to an ion beam along a guide axis as the ions are transmitted through the ion guide. The effective potential of the RF field has potential wells distributed along the guide axis. The RF field is constructed such that the potential wells move in an axial direction toward an exit end of the ion guide.
Abstract:
An ion detection system for detecting ions whose velocity varies during an operating cycle. The ion detection system includes a dynode electron multiplier (e.g., a microchannel plate (MCP)) having a bias voltage input, and a bias voltage source to apply a bias voltage to the bias voltage input of the dynode electron multiplier. With a fixed bias voltage applied to its bias voltage input, the dynode electron multiplier has a gain dependent on the velocity of ions incident thereon. The bias voltage applied by the bias voltage source to the bias voltage input of the dynode electron multiplier varies during the operating cycle to reduce the dependence of the gain of the dynode electron multiplier on the velocity of the ions incident thereon.
Abstract:
A method of determining the mass-to-charge ratios of ions in a sample is disclosed. The method includes determining a data acquisition time, where the data acquisition time is a predetermined fraction of the greatest time of flight. The method also includes providing ions from a continuous beam of a sample to a time-of-flight mass analyzer at pulse intervals having a duration equal to the predetermined fraction of the greatest flight time. The method also includes measuring a peak width and a flight time value for each of the ion species in the sample after summing the data acquired during several pulse intervals and correcting the measured flight time values according to a correlation of measured peak width values with calibration data of peak width versus flight time.