Abstract:
Embodiments of the present disclosure relate to treating diseased tissue with ablation therapy. In an embodiment, an apparatus comprises a catheter having an elongate body extending between a proximal end and a distal end. The apparatus further includes a balloon structure arranged proximal to the distal end of the catheter, wherein the balloon structure has a first portion with a first permeability and a second portion with a second permeability such that the first permeability is different than the second permeability. In addition, the apparatus includes a first electrode arranged on or within the balloon structure and configured to: transmit current through the first portion, receive current transmitted through the first portion or both.
Abstract:
An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
Abstract:
A medical device made of a hybrid polymeric structure includes a tubular body including a first layer and a second layer. The first layer includes a fibrous matrix comprising a plurality of randomly oriented nanofibers made at least in part of a first polymeric material and pores formed between at least a portion of the nanofibers. The second layer is made at least in part of a second polymeric material. At least a portion of the second layer is disposed about and between the plurality of nanofibers such that at least a portion of the second polymeric material is embedded into at least a portion of the pores of the fibrous matrix.
Abstract:
A method for making a tubular medical device having a hybrid polymeric structure includes forming a first layer comprising a non-woven fibrous matrix made of a first polymeric material and forming a second layer comprising a second polymeric material about the first layer such that at least a portion of the second polymeric material of the second layer embeds into at least a portion of the first polymeric material of the first layer.
Abstract:
Embodiments of the present disclosure relate to treating diseased tissue with ablation therapy. In an embodiment, an apparatus comprises a catheter having an elongate body extending between a proximal end and a distal end. The apparatus further includes a balloon structure arranged proximal to the distal end of the catheter, wherein the balloon structure has a first portion with a first permeability and a second portion with a second permeability such that the first permeability is different than the second permeability. In addition, the apparatus includes a first electrode arranged on or within the balloon structure and configured to: transmit current through the first portion, receive current transmitted through the first portion or both.
Abstract:
An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
Abstract:
The present disclosure relates generally to electroporation systems and utilizing algorithms for electroporation pulse delivery including a patient's EKG/EGM monitoring. In some embodiments, an electroporation delivery system may include an electrocardiogram operatively connected to a processing device and a memory. One or more sensors may be operatively connected to the electrocardiogram for measuring electrical activity QRS complex of a patient's heart. One or more electrodes for treatment may be disposed in, at, or near the patient's heart, the one or more electrodes operatively connected to a pulse delivery mechanism. The electroporation delivery system may be configured to determine whether an electroporation pulse is deliverable to a patient based on the electrocardiogram.
Abstract:
A method for making a tubular medical device having a hybrid polymeric structure includes forming a first layer comprising a non-woven fibrous matrix made of a first polymeric material and forming a second layer comprising a second polymeric material about the first layer such that at least a portion of the second polymeric material of the second layer embeds into at least a portion of the first polymeric material of the first layer.
Abstract:
The present disclosure relates generally to electroporation systems and utilizing algorithms for electroporation pulse delivery including a patient's EKG/EGM monitoring. In some embodiments, an electroporation delivery system may include an electrocardiogram operatively connected to a processing device and a memory. One or more sensors may be operatively connected to the electrocardiogram for measuring electrical activity QRS complex of a patient's heart. One or more electrodes for treatment may be disposed in, at, or near the patient's heart, the one or more electrodes operatively connected to a pulse delivery mechanism. The electroporation delivery system may be configured to determine whether an electroporation pulse is deliverable to a patient based on the electrocardiogram.
Abstract:
An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.