Abstract:
A method of producing liquid fuel by a Fischer-Tropsch synthesis reaction using a thermal medium-circulated heat exchanger type reactor is provided. The thermal medium-circulated heat exchanger type reactor uses the cobalt metal foam catalyst including a metal foam coated with cobalt catalyst powder is used. Exothermic reaction heat generated by the Fischer-Tropsch synthesis reaction occurring in the cobalt metal foam catalyst layer of the tube unit is controlled by thermal medium oil circulating in the shell unit at a reaction temperature of 190˜250° C. and a reaction pressure of 20˜25 atm, and simultaneously the reaction is conducted, thus producing liquid fuel.
Abstract:
This invention relates to a cobalt-based catalyst on a metal structure for selective production of synthetic oil via Fischer-Tropsch reaction, a method of preparing the same and a method of selectively producing synthetic oil using the same, wherein zeolite, cobalt and a support are mixed and ground to give a catalyst sol, which is then uniformly thinly applied on the surface of a metal structure using a spray-coating process, thereby preventing generation of heat during Fischer-Tropsch reaction and selectively producing synthetic oil having a carbon chain shorter than that of wax. This catalyst is prepared by burning a powder mixture obtained by melt infiltration of a cobalt hydrate and a metal oxide support to give a catalyst powder including cobalt oxide/metal oxide support; hybridizing the catalyst powder including cobalt oxide/metal oxide support with a zeolite powder to give a hybrid catalyst powder; mixing the hybrid catalyst powder with an organic binder and an inorganic binder and grinding the mixed hybrid catalyst powder to give a hybrid catalyst sol; spray-coating a metal structure surface-treated with alumina by atomic layer deposition with the hybrid catalyst sol; and thermally treating the metal structure spray-coated with the hybrid catalyst sol.