Abstract:
A high-resolution pressure-sensing device is disclosed. The device includes an insulating flexible matrix having a plurality of filler particles. Application of a force to the matrix causes compression of the matrix. This results in the filler particles occupying a greater amount of space within the matrix relative to when no force is applied. A detector attached to the matrix detects or measures the volume of the filler particles relative to the volume of the matrix, and therefore determines the force applied to the matrix. Preferably, the resistivity of the matrix is inversely proportional to the volume percent of the filler particles, in which case the detector is a resistance-measuring circuit.
Abstract:
Mechanical stress is diminished by forming an oxidation mask with silicon nitride having a graded silicon concentration. Grading is accomplished by changing the silicon content in the silicon nitride. The silicon nitride can be graded in a substantially linear or non-linear fashion. In one embodiment, the graded silicon nitride may be formed with one type of non-linear silicon grading, an abrupt junction. In other embodiments, the silicon nitride is formed in a variety of shapes fashioned during or after silicon nitride growth. In one embodiment, the stress is reduced by forming a polysilicon buffer layer between two silicon nitride layers. In another embodiment, stress is reduced by forming the silicon nitride on a pad layer, which in turn is formed on a base layer.
Abstract:
A socket device for receiving a connection pin is disclosed, the socket device including a substrate having an upper surface. The socket device includes a connection pad disposed on the upper surface and a first layer disposed on the upper surface and on the connection pad. The first layer includes material having an overall positive coefficient of thermal expansion. The socket device includes a second layer disposed on the first layer. The second layer includes material having an overall negative coefficient of thermal expansion. The socket device also includes a contact hole formed in the first and second layers exposing a portion of the connection pad.
Abstract:
The present invention is directed to fabrication of a capacitor formed with a substantially concave shape and having optional folded or convoluted surfaces. The concave shape optimizes surface area within a small volume and thereby enables the capacitor to hold a significant charge so as to assist in increased miniaturization efforts in the microelectronic field. The capacitor is fabricated in microelectronic fashion consistent with a dense DRAM array. Methods of fabrication include stack building with storage nodes that extend above a semiconductor substrate surface.
Abstract:
The present invention is directed to fabrication of a capacitor formed with a substantially concave shape and having optional folded or convoluted surfaces. The concave shape optimizes surface area within a small volume and thereby enables the capacitor to hold a significant charge so as to assist in increased miniaturization efforts in the microelectronic field. The capacitor is fabricated in microelectronic fashion consistent with a dense DRAM array. Methods of fabrication include stack building with storage nodes that extend above a semiconductor substrate surface.
Abstract:
A method and apparatus for creating second order vibrational modes. The apparatus includes a signal generator, a piezoelectric transducer, a plurality of wave propagating beams and reflecting boards. An electric field applied by the signal generator to the piezoelectric transducer induces a unidirectional vibration of the transducer. The vibration is propagated through the beams and reflected by the reflecting boards in a closed polygonal loop. The final reflection direction is perpendicular to the original vibration. A circular or elliptical vibration of the apparatus results. The circular or elliptical vibrational energy can be imparted to the wire bond of an integrated circuit to add strength to the connection.