Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
A semiconductor package is disclosed, which includes: a packaging substrate; a semiconductor element disposed on the packaging substrate in a flip-chip manner; a stopping portion formed at edges of the semiconductor element; an insulating layer formed on an active surface of the semiconductor element and the stopping portion; and an encapsulant formed between the packaging substrate and the insulating layer. The insulating layer has a recessed portion formed on the stopping portion and facing the packaging substrate such that during a reliability test, the recessed portion can prevent delamination occurring between the insulating layer and the stopping portion from extending to the active surface of the semiconductor element.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a plurality of connecting pads; a semiconductor component having a plurality of bonding pads formed on a surface thereof and corresponding to the connecting pads and a UBM layer formed on the bonding pads; a plurality of conductive elements each having a first conductive portion and a second conductive portion sequentially formed on the UBM layer, wherein the second conductive portion is less in width than the first conductive portion; and a plurality of solder balls formed between the second conductive portions and the connecting pads for connecting the semiconductor component and the substrate, thereby preventing solder bridging from occurring between the adjacent conductive elements and reducing stresses between the conductive elements and the UBM layer.
Abstract:
A semiconductor device is disclosed, which includes: a substrate having a plurality of connecting pads; a semiconductor component having a plurality of bonding pads formed on a surface thereof and corresponding to the connecting pads and a UBM layer formed on the bonding pads; a plurality of conductive elements each having a first conductive portion and a second conductive portion sequentially formed on the UBM layer, wherein the second conductive portion is less in width than the first conductive portion; and a plurality of solder balls formed between the second conductive portions and the connecting pads for connecting the semiconductor component and the substrate, thereby preventing solder bridging from occurring between the adjacent conductive elements and reducing stresses between the conductive elements and the UBM layer.
Abstract:
A packaging substrate and a package structure are provided. The packaging substrate includes a plurality of dielectric layers, two of which have a difference in thickness; and a plurality of circuit layers alternately stacked with the dielectric layers. Therefore, the package warpage encountered in the prior art is avoided.
Abstract:
A semiconductor package is disclosed, which includes: a packaging substrate; a semiconductor element disposed on the packaging substrate in a flip-chip manner; a stopping portion formed at edges of the semiconductor element; an insulating layer formed on an active surface of the semiconductor element and the stopping portion; and an encapsulant formed between the packaging substrate and the insulating layer. The insulating layer has a recessed portion formed on the stopping portion and facing the packaging substrate such that during a reliability test, the recessed portion can prevent delamination occurring between the insulating layer and the stopping portion from extending to the active surface of the semiconductor element.
Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
A packaging substrate and a package structure are provided. The packaging substrate includes a plurality of dielectric layers, two of which have a difference in thickness; and a plurality of circuit layers alternately stacked with the dielectric layers. Therefore, the package warpage encountered in the prior art is avoided.
Abstract:
A flip-chip packaging substrate is provided, which includes: a substrate body; a plurality of conductive pads formed on a surface of the substrate body; an insulating layer formed on the surface of the substrate body and having a plurality of openings correspondingly exposing a portion of each of the conductive pads; and a metal layer formed on each of the conductive pads in the openings, wherein the metal layer has a top surface having a lowest point lower than a top surface of the insulating layer, and a thickness ratio of the metal layer to the insulating layer is greater than or equal to 1/4 and less than 1, thereby preventing a solder bridge or short circuit from occurring.