Abstract:
A bolometer infrared detecting element has a thermal isolation structure in which a temperature detector comprising a bolometer thin film is held floating from a circuit substrate by beams. As infrared rays incident on the temperature detector or reflected by an infrared reflector are absorbed by a protective film and the bolometer thin film, the temperature of the bolometer thin film rises, and the temperature rise is detected as a change in resistance. When a high temperature object whose temperature is equal to or higher than a predetermined temperature or whose output voltage is equal to or higher than a value corresponding to the predetermined temperature is detected, a control temperature setter or a pulse bias setter performs control in such a way as to raise the temperature of a Peltier device stepwise or in a pulse form, or to increase the width of a pulse of pulse bias, or to increase the voltage value of the pulse. This makes it possible to raise the temperature of the infrared detecting element, thereby reducing an afterimage.
Abstract:
An extended area “cavity type” blackbody for use as a radiometric reference for imaging systems may have a well in the form of a cube having four sidewalls and a back wall, and open at the front. The temperature of the back wall may be controlled independently of the temperature(s) of the sidewalls. This system may produce infrared radiance closer to an ideal radiator than typical extended area sources. A “simple” blackbody is disclosed, having a source plate with a front emitting surface; a ledge element disposed in front of and below the source plate for heating air in front of the source plate; and (optionally) another ledge element disposed in front of and above the source plate for cooling air in front of the source plate. A housing may support the source plate and ledge element, and a vent may be provided in front of and above the source plate. A resistive heater may be associated with the ledge element; and (optionally) TECs may be associated with the other (cooling) ledge element. Angles of the ledges may be adjustable to optimize the best uniformity for a particular implementation. Temperature control of the ledges may be in unison with or independent from the source plate.
Abstract:
Apparatus for detecting particulates (46) within a medium in a chamber (10) comprises a photo-detector (14) which is maintained at a stable low temperature by a Peltier type cooling device (42). Scattered light from the particulate (46) is focused by a spherical lens (34) onto the input face (30) of a rod lens (22). The latter has an optical pitch of 0.5 and transfers the image to its output face (25) whence it passes via a light pipe (18) to the sensitive area (16) of the photo-electric device (14). The rod lens (22) provides an inexpensive means for transferring the light and which provides a thermal barrier. Thus, although the photo-electric device (14) is held at a low temperature, the input face (30) of the rod lens (22) can be held at the temperature of the medium within the chamber (10) and is not subjected to the formation of mist or ice. The lens (34) is mounted by means of a collar ( 28) which is slidable into a position in which the lens (34) focuses the input light into the face (30) of the lens (22), and then secured in this position by ultra-violet-cured adhesive fillets (32, 34).
Abstract:
Disclosed is an integrated circuit (IC) chip incorporating a temperature-sensitive element and temperature stabilization circuitry for ensuring that the temperature of the temperature-sensitive element (TSE) remains essentially constant. The IC chip comprises a temperature-sensitive element and, within at least one region adjacent to the temperature-sensitive element, a first circuit that radiates a first heat amount to the TSE and a second circuit that radiates a second heat amount to the TSE. The second circuit senses changes in a first current amount in the first circuit and, thereby changes in the first heat amount. In response to those changes, the second circuit also automatically adjusts a second current amount in the second circuit and, thereby the second heat amount in order to ensure that the total heat amount radiated by the first circuit and the second circuit, in combination, to the TSE remains constant. Also disclosed is an associated method.
Abstract:
A temperature sensor is incorporated within a housing having a silicon window through which infra-red radiation can enter. Mounted on a support structure is a semiconductor fabrication consisting of a reference junction and a sensing junction, covered with a black absorber. The reference junction is responsive to the temperature of the housing, whereas the sensing junction is responsive to the temperature of the housing and also the temperature of a remote zone from which infra-red radiation can enter the housing via the window. A Peltier heater/cooler controls the temperature of the housing, which temperature is monitored by a sensor to provide a measure of that of the remote zone.
Abstract:
A temperature control apparatus comprises a light-emitting device, a light-emitting device controller, a Peltier device for controlling the temperature of the light-emitting device to a target temperature, a temperature detector for the light-emitting device, a first reference voltage holding unit for holding a voltage corresponding to the target temperature, a reference voltage controller for outputting a holding signal and a switching signal, a second reference voltage holding unit for holding the output voltage of the temperature detector on the basis of the holding signal, a reference voltage switching unit for selecting either the output of the first reference voltage holding unit or the output of the second reference voltage holding unit as a reference voltage, and a Peltier controller for controlling the Peltier device so as to minimize a difference between the output voltage of the temperature detector and the output voltage of the reference voltage switching unit.
Abstract:
A time-resolved fluorometer, having a light tight enclosure, for detecting the presence of an analyte in a sample. Within the light tight enclosure are a pulsed dye laser that produces a pulsed light beam for sample excitation, a light tight sample excitation station through which samples, treated with a reagent composition, are passed into the path of the pulsed light excitation beam to produce a delayed fluorescence emission, a fused silica lens system through which the delayed fluorescence emission passes and an assembly which selectively amplifies, counts and characterizes the resulting emissions. The operation and coordination of the time resolved fluorometer are under computerized control as are the readings reported. Significant improvements relate to the fused silica lens systems and interference filters, cooling of the emission measurement apparatus and particularly the improved performance resulting from the combination of these aspects.
Abstract:
A high speed infrared temperature measuring device which consists of a lens barrel in an instrument housing, a sensor in the lens barrel to read an infrared target signal, a processing circuit for the signal, an automatic circuit for the thermoelectric cooler and a black body compensation circuit and means to read and record the processed signal.
Abstract:
Disclosed is an integrated circuit (IC) chip incorporating a temperature-sensitive element and temperature stabilization circuitry for ensuring that the temperature of the temperature-sensitive element (TSE) remains essentially constant. The IC chip comprises a temperature-sensitive element and, within at least one region adjacent to the temperature-sensitive element, a first circuit that radiates a first heat amount to the TSE and a second circuit that radiates a second heat amount to the TSE. The second circuit senses changes in a first current amount in the first circuit and, thereby changes in the first heat amount. In response to those changes, the second circuit also automatically adjusts a second current amount in the second circuit and, thereby the second heat amount in order to ensure that the total heat amount radiated by the first circuit and the second circuit, in combination, to the TSE remains constant. Also disclosed is an associated method.
Abstract:
A bolometer infrared detecting element has a thermal isolation structure in which a temperature detector comprising a bolometer thin film is held floating from a circuit substrate by beams. As infrared rays incident on the temperature detector or reflected by an infrared reflector are absorbed by a protective film and the bolometer thin film, the temperature of the bolometer thin film rises, and the temperature rise is detected as a change in resistance. When a high temperature object whose temperature is equal to or higher than a predetermined temperature or whose output voltage is equal to or higher than a value corresponding to the predetermined temperature is detected, a control temperature setter or a pulse bias setter performs control in such a way as to raise the temperature of a Peltier device stepwise or in a pulse form, or to increase the width of a pulse of pulse bias, or to increase the voltage value of the pulse. This makes it possible to raise the temperature of the infrared detecting element, thereby reducing an afterimage.