Abstract:
A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.
Abstract:
A method of manufacturing a component-built-in wiring substrate which exhibits excellent reliability, through improvement of adhesion between a resin filler and a core substrate, is provided. In some embodiments the method comprises a core substrate preparation step for preparing a core substrate, an accommodation-hole forming step for forming an accommodation hole in the core substrate, and a through-hole forming step for forming through-holes. In a plating-layer forming step, a plating layer is formed on an inner wall surface of the accommodation hole and plating layers are formed on the inner wall surfaces of the through-holes, which become through-hole conductors each having a hollow. In an accommodation step, a component is accommodated in the accommodation hole. In a resin charging step, a resin filler is filled into a gap between component side-surfaces and the inner wall surface of the accommodation hole and into the hollows.
Abstract:
An objective is to provide a component-incorporated wiring substrate capable of solving a problem caused by an increase in length of wiring lines that connect a component and a capacitor. A component-incorporated wiring substrate 10 includes a core substrate 11, a first capacitor 301, a wiring laminate portion 31, and a second capacitor 101. An accommodation hole portion 90 of the core substrate 11 accommodates the first capacitor 101 therein, and a component-mounting region 20 is set on a surface 39 of the wiring laminate portion 31. The second capacitor 101 has electrode layers 102, 103 and a dielectric layer 104. The second capacitor 101 is embedded in the wiring laminate portion 31 in such a state that first main surfaces 105, 107 and second main surfaces 106, 108 are in parallel with the surface 39 of the wiring laminate portion 31, and is disposed between the first capacitor 301 and the component-mounting region 20.
Abstract:
A printed circuit board unit includes a printed circuit board including through holes arranged in a grid array on which an integrated circuit is mounted; and a flexible substrate provided on a back side of the printed circuit board, covering the through holes. First lands to which the integrated circuit is connected are formed on a front side of the printed circuit board. Second lands to which the flexible substrate is connected are formed on the back side of the printed circuit board. The first lands and the second lands are connected to first ends and second ends of the through holes, respectively. Third lands are formed on a front side of the flexible substrate so as to face the second lands of the printed circuit board. Fourth lands are formed on a back side of the flexible substrate. The fourth lands are electrically connected to the third lands.
Abstract:
A capacitor comprising: a plurality of laminated dielectric layers; a plurality of inner electrode layers each disposed between mutually adjacent ones of the dielectric layers; and dummy electrode layers respectively disposed between the dielectric layers, disposed on sides closer to outer peripheral sides of the dielectric layers than to the inner electrode layers and disposed apart from the inner electrode layers.
Abstract:
A wiring board comprising: a board core (11) having a core main surface (12) and a core reverse surface (13); a capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″) having a capacitor main surface (102) and a capacitor reverse surface (103) and having a structure in which first inner electrode layers (141) and second inner electrode layers (142) are alternately laminated and arranged via a dielectric layer (105), the capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″) being accommodated in the board core (11) in a state in which the core main surface (12) and the capacitor main surface (102) are oriented on a same side; and a wiring laminated portion (31) having a structure in which interlayer insulating layers (33, 35) and conductor layers (42) are alternately laminated on the core main surface (12) and the capacitor main surface (102), wherein an inductor (251, 252, 253) or a resistor (301, 302, 311, 312, 321, 322) is formed on or in the capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″).
Abstract:
A component built-in wiring substrate (10) which includes: a core substrate (11); a plate-shaped component (101); a resin filling portion (92); and a wiring stacking portion (31), wherein, when viewed from the core principal surface (12) side, the projected area of the mounting area (32) is larger than the projected area of the plate-shaped component (101) and the resin filling portion, and the plate-shaped component and the resin filling portion are positioned directly below the mounting area (23), and wherein a value of the coefficient of thermal expansion (CTE α2) for a temperature range that is equal to or higher than the glass transition temperature of the resin filling portion is set to be larger than a value of the coefficient of thermal expansion of the plate-shaped component and smaller than a value of the coefficient of thermal expansion of the core substrate for the subject temperature range.
Abstract:
In some embodiments, an individual sub-assembly containing a ceramic interposer, silicon voltage regulator, and array capacitor is presented. In this regard, an apparatus is introduced having a table-shaped ceramic interposer containing conductive traces, a silicon voltage regulator coupled with contacts on a first surface of the ceramic interposer, and an array capacitor coupled with contacts on a second surface of the ceramic interposer. Other embodiments are also disclosed and claimed.
Abstract:
A capacitor comprising: a plurality of laminated dielectric layers; a plurality of inner electrode layers each disposed between mutually adjacent ones of the dielectric layers; and dummy electrode layers respectively disposed between the dielectric layers, disposed on sides closer to outer peripheral sides of the dielectric layers than to the inner electrode layers and disposed apart from the inner electrode layers.
Abstract:
A wiring board includes a substrate core, ceramic capacitors and a built-up layer. The substrate core has a housing opening portion therein which opens at a core main surface. The ceramic capacitors are accommodated in the housing opening portion and oriented such that the core main surface and a capacitor main surface of each capacitor face the same way. The built-up layer includes semiconductor integrated circuit element mounting areas at various locations on a surface thereof. In the substrate core, each ceramic capacitor is respectively disposed in an area corresponding to each semiconductor integrated circuit element mounting area.