Abstract:
The invention relates to phosphacyclohexanes of general formulae I and II, wherein the following designations, among others, apply: R can represent hydrogen, C1-100-alkyl, C7-20-aralkyl, C7-20-alkaryl, and C6-12-aryl; R to R can independently represent hydrogen, C1-20-alkyl, C7-20-aralkyl, C7-20-alkaryl, and C6-12-aryl; W, W' can independently represent single bonds or bridges comprising 1 to 20 carbon atoms, which can form part of a cyclic or aromatic group and can be interrupted by heteroatoms. Said phosphacyclohexanes are used as ligands in transition metal complexes of transition metals belonging to groups VIII to X of the periodic table.
Abstract:
The invention relates to a method for production of hydroformylated olefins, whereby a) an olefin-containing feed, carbon monoxide and hydrogen are fed into a first reaction zone and reacted in the presence of a first catalyst system, b) a liquid stream essentially comprising unreacted olefins and optionally saturated hydrocarbons is separated from the discharge from the first reaction zone, c) the liquid stream obtained in step b), carbon monoxide and hydrogen are fed into a second reaction zone and reacted in the presence of a second catalyst system.
Abstract:
The invention relates to a method for producing a C13 alcohol mixture, according to which a) a stream of C4 hydrocarbon containing butenes, which includes less than 5 % by weight of iso-butene in relation to the butene fraction, is brought into contact with a heterogeneous catalyst containing a nickel at a raised temperature, b) a C12 olefin fraction is isolated from the reaction mixture, c) the C12 olefin fraction is hydroformulated by being reacted with carbon dioxide and hydrogen in the presence of a cobalt catalyst and d) is hydrated. The alcohol mixture thus obtained is suitable for producing surfactants by alkoxylation, glycosidation, sulphation, phosphation, alkoxylation and subsequent sulphation or alkoxylation and subsequent phosphation.
Abstract:
The mixture described is a mixture of isomeric nonanol diesters of a dicarboxylic acid, selected from the class consisting of a mixture of diesters of adipic acid in the 1H NMR spectrum of which, observed in CDCl3, the ratio of the area under the resonance signals at chemical shifts in the range from 1.0 to 2.0 ppm with respect to TMS to the area under the resonance signals at chemical shifts in the range from 0.5 to 1.0 ppm with respect to TMS is from 1.20 to 5.00 and a mixture of diesters of phthalic acid, in the 1H NMR spectrum of which, observed in CDCl3, the ratio of the area under the resonance signals at chemical shifts in the range from 1.1 to 3.0 ppm with respect to TMS to the area under the resonance signals at chemical shifts in the range from 0.5 to 1.1 ppm with respect to TMS is from 1.00 to 4.00.The diesters of adipic and phthalic acid are suitable as plasticizers for PVC-based molding compositions and have high compatibility, a low cold crack temperature, low torsional rigidity and/or high thermal stability.
Abstract:
The invention relates to a method for the production of aldehydes or aldehydes and alcohols by hydroformylation of olefins in the presence of a complexing catalyst homogeneously dissolved in a reaction mixture, containing a metal of Group VIIIa of the periodic table of the elements and a phosphorus-free, polydentate nitrogen compound suitable for complex formation as ligand at temperatures ranging from 50 to 100° C. and pressures from 20 to 1,000 bar and recirculating the catalyst complex in the hydroformylation reaction, wherein a) derivatized polyamines are used that are substantially non-water soluble and suitable for complex formation and have a mean molecular weight of more than 1,000 Dalton and at least 10 nitrogen atoms; b) the catalyst complex remaining in the bottom of the distillation column and the excess ligands obtained from the reaction mixture are recirculated totally or partially in the hydroformylation once the hydroformylation reaction and the separation or partial separation by distillation of the aldehydes and the alcohols has been completed; c) continues or at least batchwise evacuation of at least part of the high boiler from the bottom of the distillation of the reaction mixture is then carried out.
Abstract:
The invention relates to a method for the production of aldehydes or aldehydes and alcohols by hydroformylation of olefins in the presence of a complexing catalyst homogeneously dissolved in a reaction mixture, containing a metal of Group VIIIa of the periodic table of the elements and a phosphorus-free, polydentate nitrogen compound suitable for complex formation as ligand at temperatures ranging from 50 to 100° C. and pressures from 20 to 1,000 bar and recirculating the catalyst complex in the hydroformylation reaction, wherein a) derivatized polyamines are used that are substantially non-water soluble and suitable for complex formation and have a mean molecular weight of more than 1,000 Dalton and at least 10 nitrogen atoms; b) the catalyst complex remaining in the bottom of the distillation column and the excess ligands obtained from the reaction mixture are recirculated totally or partially in the hydroformylation once the hydroformylation reaction and the separation or partial separation by distillation of the aldehydes and the alcohols has been completed; c) continues or at least batchwise evacuation of at least part of the high boiler from the bottom of the distillation of the reaction mixture is then carried out.
Abstract:
Un procedimiento para preparar por lo menos un alcohol, en donde:(i) por lo menos un alqueno es hidratado en presencia de agua poniéndolo en contacto con por lo menos un catalizador para formar un alcohol o alcoholes,caracterizado porque el catalizador o los catalizadores heterogéneo (s) comprende / comprenden un catalizador zeolítico que tiene una estructura MCM-22, MCM-36, MCM-49, PSH-3 o ITQ-2, o una mezcla de dos o más de estas estructuras.
Abstract:
The invention relates to a catalyst system for carbonylating olefinically or acetylenically unsaturated compounds with carbon monoxide and a nucleophile compound, containing (a) palladium; (b) a phosphine and (c) a polymer containing nitrogen which is soluble in the reaction mixture, with the exception of polyvinyl polymers with aromatic radicals containing nitrogen on the polymer chain. The invention also relates to a method for carbonylation in the presence of one such catalyst system.
Abstract:
The mixture described is a mixture of isomeric nonanol diesters of a dicarboxylic acid, selected from the class consisting of a mixture of diesters of adipic acid in the 1H NMR spectrum of which, observed in CDCl3, the ratio of the area under the resonance signals at chemical shifts in the range from 1.0 to 2.0 ppm with respect to TMS to the area under the resonance signals at chemical shifts in the range from 0.5 to 1.0 ppm with respect to TMS is from 1.20 to 5.00 and a mixture of diesters of phthalic acid, in the 1H NMR spectrum of which, observed in CDCl3, the ratio of the area under the resonance signals at chemical shifts in the range from 1.1 to 3.0 ppm with respect to TMS to the area under the resonance signals at chemical shifts in the range from 0.5 to 1.1 ppm with respect to TMS is from 1.00 to 4.00.The diesters of adipic and phthalic acid are suitable as plasticizers for PVC-based molding compositions and have high compatibility, a low cold crack temperature, low torsional rigidity and/or high thermal stability.
Abstract:
The present invention relates to an alcohol mixture which substantively comprises alcohols having 13 or 15 carbon atoms, to a process for its preparation, to a process for functionalizing these alcohol mixtures, and to the resultant functionalized alcohol mixtures and their use.