Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor (14) is covered by a capping layer (16) and a dielectric layer (18). The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor (14). In the process of sputter etching, the capping layer is redeposited (22) onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor (14) is covered by a dielectric layer (18). The dielectric layer is patterned so as to expose the metal conductor. A liner layer (24) is then deposited into the pattern. The liner layer is then argon sputter etched to remove the liner layer and expose the metal conductor (14). In the process of argon sputter etching, the liner layer is redeposited onto the sidewall of the pattern. Lastly, an additional layer (26) is deposited into the pattern and covers the redeposited liner layer.
Abstract:
Embodiments of the invention provide a method of forming nickel-silicide. The method may include depositing first and second metal layers (105, 106) over at least one of a gate, a source, and a drain region of a field-effect-transistor (FET) (100) through a physical vapor deposition (PVD) process, wherein the first metal layer (105) is deposited using a first nickel target material containing platinum (Pt), and the second metal layer (106) is deposited on top of the first metal layer using a second nickel target material containing no or less platinum than that in the first nickel target material; and annealing the first and second metal layers covering the FET to form a platinum-containing nickel- silicide layer (107) at a top surface of the gate, source, and drain regions.
Abstract:
Embodiments of the invention provide a method of forming nickel-silicide. The method may include depositing first and second metal layers over at least one of a gate, a source, and a drain region of a field-effect-transistor (FET) through a physical vapor deposition (PVD) process, wherein the first metal layer is deposited using a first nickel target material containing platinum (Pt), and the second metal layer is deposited on top of the first metal layer using a second nickel target material containing no or less platinum than that in the first nickel target material; and annealing the first and second metal layers covering the FET to form a platinum-containing nickel-silicide layer at a top surface of the gate, source, and drain regions.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a dielectric layer. The dielectric layer is patterned so as to expose the metal conductor. A liner layer is then deposited into the pattern. The liner layer is then argon sputter etched to remove the liner layer and expose the metal conductor. In the process of argon sputter etching, the liner layer is redeposited onto the sidewall of the pattern. Lastly, an additional layer is deposited into the pattern and covers the redeposited liner layer.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a dielectric layer. The dielectric layer is patterned so as to expose the metal conductor. A liner layer is then deposited into the pattern. The liner layer is then argon sputter etched to remove the liner layer and expose the metal conductor. In the process of argon sputter etching, the liner layer is redeposited onto the sidewall of the pattern. Lastly, an additional layer is deposited into the pattern and covers the redeposited liner layer.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
Abstract:
In Ausführungsformen der Erfindung wird ein Verfahren zum Bilden von Nickelsilicid bereitgestellt. Das Verfahren kann das Abscheiden einer ersten und zweiten Metallschicht (105, 106) über zumindest einer aus einer Gate-, einer Source- und einer Drain-Zone eines Feldeffekttransistors (FET) (100) durch ein Verfahren der physikalischen Abscheidung aus der Gasphase (PVD) umfassen, wobei die erste Metallschicht (105) unter Verwendung eines ersten Nickel-Targetmaterials abgeschieden wird, welches Platin (Pt) enthält, und die zweite Metallschicht (106) unter Verwendung eines zweiten Nickel-Targetmaterials oben auf der ersten Metallschicht abgeschieden wird, welches kein Platin oder weniger Platin als das erste Nickel-Targetmaterial enthält; und das Tempern der ersten und zweiten Metallschicht umfassen, die den FET bedecken, um an einer oberen Fläche der Gate-, Source- und Drain-Zone eine platinhaltige Nickelsilicidschicht (107) zu bilden.
Abstract:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.