Abstract:
A mechanism for continuously referencing signals over multiple layers in laminate packages provides a continuous path for signals from one layer to another while using the ideal voltage reference for all areas of the package and still avoiding discontinuities in the voltage reference. A reference plane adjustment engine analyzes a package design and identifies an ideal top plane for all areas of the package, including areas under particular chip die(s) and areas that are not under a chip die. The reference plane adjustment engine then modifies the package design to reposition ground planes, source voltage planes, signal planes, and vias between layers to maintain a continuous voltage reference regardless of the top layer. The reference plane adjustment engine provides the resulting mixed voltage plane package design to a design analysis engine. A package fabrication system fabricates the package.
Abstract:
A method for electronic circuit power plane design includes analyzing direct current (DC) properties of a power plane of an electronic circuit. The method includes analyzing power net inductance (PNI) properties of the power plane and identifying victim areas of the power plane having predetermined current density properties based on the DC properties and the PNI properties of the power plane. The method further includes replacing the identified victim areas with ground (GND) shapes to form a modified power plane.
Abstract:
A DC bus for use in a power module has a positive DC conductor bus plate parallel with a negative DC conductor bus plate. One or more positive leads are connected to the positive bus and are connectable to a positive terminal of a power source. One or more negative leads are connected to the negative bus and are connectable to a negative terminal of a power source. The DC bus has one or more positive connections fastenable from the positive bus to the high side of a power module. The DC bus also has one or more negative connections fastenable from the negative bus to the low side of the power module. The positive bus and negative bus permit counter-flow of currents, thereby canceling magnetic fields and their associated inductances, and the positive and negative bus are connectable to the center portion of a power module.
Abstract:
According to some embodiments, a device includes a first conductive plane electrically coupled to a first terminal associated with a first polarity and a second terminal associated with the first polarity, a second conductive plane electrically coupled to a third terminal associated with a second polarity, a dielectric disposed between the first conductive plane and the second conductive plane, a third conductive plane electrically coupled to the second terminal and not electrically coupled to the first terminal, and a second dielectric disposed between the second conductive plane and the third conductive plane. A first capacitance is present between the first terminal and the third terminal, a second capacitance is present between the second terminal and the third terminal, and the first capacitance and the second capacitance may be substantially dissimilar.
Abstract:
A multi-layer printed circuit board (PCB) routes signal traces on internal signal layer(s) and includes power planes on the two outermost layers. The outer layers are maintained at the same non-ground voltage level, and are electrically connected by a series of vias that circumscribe signal traces on the internal layer(s). With a preferred maximum spacing of one-tenth the wavelength of electromagnetic energy generated by the signal traces, the vias, together with the outer power planes, contain electromagnetic energy within the PCB. One or more of the outer planes may include a second power plane area maintained at a different voltage. The two power plane areas are connected by decoupling capacitors, located proximate underlying signal traces that traverse the two power plane areas.
Abstract:
An electronic control apparatus includes an exclusive power source wiring for a charge pump circuit which is discriminated from a common power source wiring. The exclusive power source wiring is connected to the common power source wiring via a via-hole va having the impedance larger than that of the wiring pattern. Similarly, the electronic control apparatus includes an exclusive ground wiring for the charge pump circuit which is discriminated from a common ground wiring. The exclusive ground wiring is connected to the common ground via an additional via-hole vb. Furthermore, a noise-suppressing capacitor C is connected between a power source wiring and a ground wiring. The power source wiring interposes between the via-hole va and the exclusive power source wiring, and the ground wiring interposes between the via-hole vb and the exclusive ground wiring.
Abstract:
A layout structure of a central processing unit (CPU) that supports two different package techniques, comprising a motherboard that comprises the layout structure and a layout method. The layout structure of the preferred embodiment according to the present invention from up to down sequentially places a top signal layer, a grounded layer, a power layer having a grounded potential, and a bottom solder layer in the area where the signals of the CPU are coupled to the signals of the control chip, so that the signals that are placed on the bottom solder layer can refer to a grounded potential area of the power layer. Therefore, part of signals of the CPU that are coupled to the control chip can be placed on the bottom solder layer. Since the preferred embodiment of the present invention provides more flexibility in the placement design, a layout structure that supports the Pentium IV CPUs of different package techniques can be designed on the motherboard of the 4 layers stack structure, and these two CPUs can be supported by the same control chip.
Abstract translation:支持两种不同包装技术的中央处理单元(CPU)的布局结构,包括包括布局结构和布局方法的主板。 根据本发明的优选实施例的布局结构从上到下顺序地在CPU的信号区域中放置顶层信号层,接地层,具有接地电位的功率层和底部焊料层 耦合到控制芯片的信号,使得放置在底部焊料层上的信号可以指功率层的接地电位区域。 因此,耦合到控制芯片的CPU的部分信号可以放置在底部焊料层上。 由于本发明的优选实施例在布局设计中提供了更多的灵活性,因此可以在四层堆栈结构的主板上设计支持不同封装技术的Pentium IV CPU的布局结构,并且这两个CPU可以被 相同的控制芯片。
Abstract:
A multi-layered printed wiring board capable of securing required wiring density even with a decreased number of wiring layers and reducing radiation noises. The multi-layered printed wiring board has at least three wiring layers each at least having at least one power supply line or a ground line, and another kind of line, said wiring layers each having an outer edge. A ground line is formed at the outer edge of at least one of the wiring layers. A basic power supply line is formed inside the ground line. At least one power supply line extends from the basic power supply line. A plurality of electronic parts are mounted on at least one of the wiring layers. The at least one power supply line is wired to mounting positions of the electronic parts via at least one of the wiring layers.
Abstract:
An electrical connector for use in a power module includes a first end portion for forming an electrical connection with a substrate, a second end portion, and a compliant portion situated between the first end portion and the second end portion. The compliant portion includes a compressed position and a decompressed position. The first end portion is configured for forming an electrical connection with a substrate if the compliant portion is in the compressed position.
Abstract:
A high frequency, low impedance network is integrated into the substrate level of a power module for the reduction of electromagnetic interference (“EMI”). In one embodiment, capacitance is electrically connected to at least one of the positive conducting layer in a substrate or the negative conducting layer in a substrate and a ground. Integrating a capacitive network of low stray inductance in a substrate of a power module allows relatively small, inexpensive capacitors to be used.