Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor. The material comprises a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening, the distance defined by a thickness of the first dielectric.
Abstract:
An instrument for processing and/or measuring a biological process contains a sample processing system, an excitation source, an excitation optical system, an optical sensor, and an emission optical system. The sample processing system is configured to retain a first sample holder and a second sample holder, wherein the number of sample cells is different for each sample holder or a characteristic dimension for the first sample cells is different from that of the second sample holder. The instrument also includes an excitation source temperature controller comprising a temperature sensor that is coupled to the excitation source. The temperature controller is configured to produce a first target temperature when the first sample holder is retained by the instrument and to produce a second target temperature when the second sample holder is retained by the instrument.
Abstract:
In one exemplary embodiment, a computer-implemented method for determining a genetic result from a biological sample is provided. The method includes receiving nucleic acid amplification data of a biological sample, by a processor, from a biological instrument. The method further includes storing translation data, in a memory. The translation data includes a pattern of assay values associated with possible genetic results. The method further includes comparing the translation data with the nucleic acid amplification data, by the processor, to generate the genetic result of the biological sample. Moreover, the method includes displaying the genetic result, on a display, to a user.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.
Abstract:
Novel Y-STR multiplex analysis designs, primer design, allelic ladders, methods of use and kits are disclosed, including the use of primer sets designed to provide amplicons for at least 11 Y-STR loci having a base pair size of less than about 220 bp, as well as the use of primer sets designed to provide amplicons for at least 22 Y-STR loci including at least 5 rapidly mutating loci.
Abstract:
The present disclosure describes compositions, methods and kits for detection of one or multiple microorganism contaminants in samples. Some embodiments relate to detecting one or more microorganisms producing virulence factors such as shiga toxin stx1 and stx2 and eae. Some embodiments relate to detection of STEC microorganisms including an E. coli O26, an E. coli O45, an E. coli O103, an E. coli O111, an E. coli O121 or an E. coli O145. In some embodiments, compositions, methods and kits can detect and identify individual serotypes of shiga toxin producing microorganisms. Workflows for multiple microbe detection and identification are also described.
Abstract:
The present disclosure is directed to compositions, methods and kits for amplifying target nucleic acids while reducing non-specific amplification and undesired amplification products using a dual hot start reaction mixture that comprise at least two different hot start mechanisms.
Abstract:
The present invention is directed generally to cell culture media (particularly serum free, non animal derived, and/or chemically defined media) which are useful for introducing macromolecules and compounds (e.g., nucleic acid molecules) into cells (e.g., eukaryotic cells). According to the invention, such introduction can take place in the presence of said medium. Cells containing such introduced materials can then be cultured in the medium and the effect of the introduced materials on the cells can be measured or determined. In particular, the invention allows introduction of nucleic acid molecules (e.g., vectors) into cells (particularly eukaryotic cells) and expression of proteins encoded by the nucleic acid molecules in the cells. The invention obviates the need to change the cell culture medium each time a different procedure is performed with the cells (e.g., culturing cells vs. transfecting cells). The invention also relates to compositions and kits useful for culturing and transforming/transfecting cells.
Abstract:
A method of genotyping includes applying a sample solution including a plurality of copies of a sample polynucleotide to an array of sensors. The sample polynucleotide includes a region associated with an allele. The method further includes measuring using a plurality of sensors of the array of sensors a characteristic of the region of the plurality of copies of the sample polynucleotide and determining using a computational circuitry and the measured characteristics a statistical value indicative of the allele.
Abstract:
A method of detection of a target nucleic acid is provided. The method includes fractionating a sample into a plurality of sample volumes wherein more than 50% of the fractions contain no more than 1 target nucleic acid molecule per sample volumes, and subjecting the plurality of sample volumes to conditions for amplification. The method further includes detecting a change in ion concentration in a sample volume wherein a target nucleic acid is present, counting the number of fractions with an amplified target nucleic acid, and determining the quantity of target nucleic acid in the sample.