Abstract:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
Abstract:
Methods of forming ceramic components are disclosed. One method calls for chemical vapor depositing a ceramic material over a substrate having first and second opposite surfaces to define a coated structure, the ceramic material forming a layer overlying both the first and second opposite surfaces. The layer and the substrate have a difference in thermal expansion coefficients of at least 0.5 ppm/K. The substrate is removed, leaving behind the layer. Ceramic components and coated structures are also disclosed.
Abstract:
Described herein is the use of a diffusion barrier layer between metallic layers in MEMS devices. The diffusion barrier layer prevents mixing of the two metals, which can alter desired physical characteristics and complicate processing. In one example, the diffusion barrier layer may be used as part of a movable reflective structure in interferometric modulators.
Abstract:
Methods of forming ceramic components are disclosed. One method calls for chemical vapor depositing a ceramic material over a substrate having first and second opposite surfaces to define a coated structure, the ceramic material forming a layer overlying both the first and second opposite surfaces. The layer and the substrate have a difference in thermal expansion coefficients of at least 0.5 ppm/K. The substrate is removed, leaving behind the layer. Ceramic components and coated structures are also disclosed.
Abstract:
Embodiments of MEMS devices include support structures having substantially vertical sidewalls. Certain support structures are formed through deposition of self-planarizing materials or via a plating process. Other support structures are formed via a spacer etch. Other MEMS devices include support structures at least partially underlying a movable layer, where the portions of the support structures underlying the movable layer include a convex sidewall. In further embodiments, a portion of the support structure extends through an aperture in the movable layer and over at least a portion of the movable layer.
Abstract:
Certain MEMS devices include layers patterned to have tapered edges. One method for forming layers having tapered edges includes the use of an etch leading layer. Another method for forming layers having tapered edges includes the deposition of a layer in which the upper portion is etchable at a faster rate than the lower portion. Another method for forming layers having tapered edges includes the use of multiple iterative etches. Another method for forming layers having tapered edges includes the use of a liftoff mask layer having an aperture including a negative angle, such that a layer can be deposited over the liftoff mask layer and the mask layer removed, leaving a structure having tapered edges.
Abstract:
Embodiments of MEMS devices include a movable layer supported by overlying support structures, and may also include underlying support structures. In one embodiment, the residual stresses within the overlying support structures and the movable layer are substantially equal. In another embodiment, the residual stresses within the overlying support structures and the underlying support structures are substantially equal. In certain embodiments, substantially equal residual stresses are obtained through the use of layers made from the same materials having the same thicknesses. In further embodiments, substantially equal residual stresses are obtained through the use of support structures and/or movable layers which are mirror images of one another.
Abstract:
A method for delicately adjusting an orientation of features in completed micro-machined electromechanical sensor (MEMS) devices after initial formation and installation within the device packaging to trim one or more performance parameters of interest, including modulation, bias and other dynamic behaviors of the MEMS devices.
Abstract:
In a movable shutter-system display device, a movable shutter includes an amorphous silicon film material which has a low residual stress and thus is stable. A display device includes a display panel comprising a first substrate and a second substrate. The display panel includes a plurality of pixels; each of the plurality of pixels includes a movable shutter including amorphous silicon and a driving circuit for driving the movable shutter; and the amorphous silicon included in the movable shutter is formed of at least two amorphous silicon films, and where any two amorphous silicon films adjacent to each other among the at least two amorphous silicon films are a first amorphous silicon film and a second amorphous silicon film stacked on the first amorphous silicon film, the first amorphous silicon film and the second amorphous silicon film have different characteristic values.