Abstract:
A flexible substrate may be provided with an array of holes and conductive traces that extend along the flexible substrate between the holes. The flexible substrate may form part of a display or other component in an electronic device. The conductive traces may be metal traces that have meandering path shapes to resist damage upon bending. A polymer coating may be applied over the metal traces to align a neutral stress plane with the metal traces and to serve as a moisture barrier. The holes may allow the flexible substrate to twist and form a three-dimensional shape as the flexible substrate is bent. A rigid or flexible protective coating may be formed by depositing a liquid polymer precursor on the flexible substrate and curing the liquid polymer precursor.
Abstract:
A paddle card construction disclosed for use in connecting electronic devices together. The paddle card takes the form of a circuit board that has a plurality of conductive contact pads arranged thereon in pairs. The contact pads of each pair are spaced apart from each other to provide a pair of points to which cable wire free ends may be terminated, such as by soldering. The spacing of the pads apart from each other in effect reduces to amount of capacitance in the cable wire termination area on the circuit board, thereby reducing the impedance and insertion loss in that area at high frequencies. The contact pads of each pair may be further interconnected together by a thin, conductive trace that extends lengthwise between the contact pads.
Abstract:
A control unit has a substrate with an electrically conductive structure, an integrated circuit device, which is installed on the substrate in an electrically conductive manner, and a sacrificial structure on the substrate. The sacrificial structure is configured to be irreversibly destroyed if the integrated circuit device is removed from the substrate. The electrically conductive structure has at least one conducting track applied to the substrate. The sacrificial structure is formed by a segment of the conducting track. An electrically insulating connecting layer that connects the integrated circuit device, the substrate, and the segment of the conducting track is formed. The sacrificial structure can be destroyed by the connecting layer when the integrated circuit device is removed.
Abstract:
Some example forms relate to an electronic package. The electronic package includes a first dielectric layer that includes an electrical trace formed on a surface of the first dielectric layer and a second dielectric layer on the surface of the first dielectric layer. The second dielectric layer includes an opening. The electrical trace is within the opening. The electronic package includes an electrical interconnect that fills the opening and extends above an upper surface of the second dielectric layer such that the electrically interconnect is electrically connected to the electrical trace on the first dielectric layer.
Abstract:
A flexible substrate may be provided with an array of holes and conductive traces that extend along the flexible substrate between the holes. The flexible substrate may form part of a display or other component in an electronic device. The conductive traces may be metal traces that have meandering path shapes to resist damage upon bending. A polymer coating may be applied over the metal traces to align a neutral stress plane with the metal traces and to serve as a moisture barrier. The holes may allow the flexible substrate to twist and form a three-dimensional shape as the flexible substrate is bent. A rigid or flexible protective coating may be formed by depositing a liquid polymer precursor on the flexible substrate and curing the liquid polymer precursor.