Abstract:
Multi-layered, organic build-up semiconductor package substrates have build-up layers with layers of both fibrous organic dielectric material and non-fibrous organic dielectric material. Non-fibrous dielectric material layers are positioned below the signal metal layers and fibrous dielectric material layers are positioned below the power/ground plane metal layers. The package substrate combines in a single package substrate the advantages of rigidity, strength and relatively low CTE of a fibrous material with the capacity of a non-fibrous material to achieve fine resolution signal metal lines.
Abstract:
The disclosed board fabrication techniques and design features enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that require a large number of signaling paths across the backplane at speeds of 2.5 Gbps or greater, as well as distribution of significant amounts of power to router components. The disclosed techniques and features allow relatively thick (e.g., three- or four-ounce copper) power distribution planes to be combined with large numbers of high-speed signaling layers in a common backplane. Using traditional techniques, such a construction would not be possible because of the number of layers required and the thickness of the power distribution layers. The disclosed embodiments use novel layer arrangements, material selection, processing techniques, and panel features to produce the desired high-speed layers and low- noise high-power distribution layers in a single mechanically stable board.
Abstract:
A compensating advanced feature patch panel that can include removable modular or fixed electronic components located directly on the patch panel which are separately or in combination capable of providing advanced features such as device detection and power insertion. The patch panel provides communications between an insulation displacement connector (IDC) at a PD/User end, and any standard interface type using unshielded twisted pair cables, such as an RJ45 connector at a switch end at performance levels of at least category 3, 5, 6 e, 6 and/or higher (e.g. 6 e or 7) and equivalent performance levels by compensating for the active electronics used in providing advanced features. Compensation is achieved in part through the separation and isolation of active and communication circuit elements.
Abstract:
A tuner section is provided on one surface of a multilayered substrate, and a demodulating section on another surface of the multilayered substrate. The multilayered substrate further includes: an analog GND layer connected to the tuner section; a digital GND layer connected to the demodulating section; a shield GND layer which is provided between the analog GND layer and the digital GND layer; and insulation layers each provided (i) between the analog GND layer and shield GND layer, or (ii) between the digital GND layer and shield GND layer so as to electrically disconnect the shield GND layer from the analog GND layer and the digital GND layer. This allows the tuner section and the demodulating section to be respectively arranged on different surfaces of the substrate, for the purpose of downsizing of the receiving device, and yet allows the tuner section from being influenced by a harmonic signal generated in the demodulating section.
Abstract:
A methodology may be used that takes into account the inductive coupling of current transients on the power rails of a printed circuit board (PCB) that may be coupled to the barrel of a via. By taking into account the coupling of the current transients on the power rails of the PCB, more accurate and realistic modeling results may be obtained. Inductive coupling of the current transients from the power rails may be more pronounced at higher frequencies and may be additive for more layer transitions (e.g., more via transitions) of the PCB.
Abstract:
The present invention relates to computer hardware design and in particular to a printed circuit board comprising wiring dedicated to supply electric board components such as integrated circuits with at least three different reference planes. In order to provide a printed circuit board having an improved signal return path for basically all relevant signal layers at transitions between card, connector, module and chip while still holding the cross-section structure simple, it is proposed to establish a layer structure wherein a) a split voltage plane is located adjacent to one side of one of said reference planes and comprises conducting portions for all of said at least three different voltage levels in respective plane parts, and b) a signal layer being located adjacent to said reference planes.
Abstract:
A compensating advanced feature patch panel that can include removable modular or fixed electronic components located directly on the patch panel which are separately or in combination capable of providing advanced features such as device detection and power insertion. The patch panel provides communications between an insulation displacement connector (IDC) at a PD/User end, and any standard interface type using unshielded twisted pair cables, such as an RJ45 connector at a switch end at performance levels of at least category 3, 5, 6e, 6 and/or higher (e.g. 6e or 7) and equivalent performance levels by compensating for the active electronics used in providing advanced features. Compensation is achieved in part through the separation and isolation of active and communication circuit elements.
Abstract:
A multi-layer PCB includes a first signal layer, a ground layer, a second signal layer, a third signal layer, an electric power layer, and a fourth signal layer, including a first insulating layer arranged between the first signal layer and the ground layer; a second insulating layer arranged between the ground layer and the second signal layer; a third insulating layer arranged between the second signal layer and the third signal layer; a fourth insulating layer arranged between the third signal layer and the electric power layer; and a fifth insulating layer arranged between the electric power layer and the fourth signal layer, wherein at least one of the first signal layer, the second signal layer, the third signal layer, and the fourth signal layer includes a pattern.
Abstract:
An electronics cabinet is provided comprising an electrical connector in electrical communication with a printed circuit board (PCB) comprising a PCB power plane, the connector comprising a plurality of power contacts defining a connector power plane adapted for receiving a substantially even power load distribution from the PCB power plane among the power contacts.
Abstract:
A printed circuit board includes a power plane and a ground reference plane that includes two opposite sides. The power plane is positioned proximate one side of the ground reference plane. A signal layer is positioned proximate the other side of the ground reference plane to isolate the power plane from the signal layer. Any noise on the power plane or the signal layer is thus isolated by the intervening ground plane.