Abstract:
A direct-write electron beam lithography system employing a patterned beam-defining aperture to enable the generation of high current-density shaped beams without the need for multiple beam-shaping apertures, lenses and deflectors is disclosed. Beam blanking is accomplished without the need for an intermediate crossover between the electron source and the wafer being patterned by means of a double-deflection blanker, which also facilitates proximity effect correction. A simple type of “moving lens” is utilized to eliminate off-axis aberrations in the shaped beam. A method for designing the patterned beam-defining aperture is also disclosed.
Abstract:
A focused ion beam apparatus having two pieces of probers brought into contact with two points of a surface of a sample, a voltage source for applying a constant voltage between the two points with which the probers are brought into contact, and an ammeter for measuring a current flowing between the two points, in which a conductive film is formed to narrow a gap thereof between the two points by operating a deflection electrode and a gas gun and the current flowing between the two points is monitored, and when the current becomes a predetermined value, a focused charged particle beam irradiated to the surface of the sample is made OFF by the blanking electrode.
Abstract:
In an electron beam exposure method in which an article subjected to exposure and an electron beam irradiation spot are moved relative to each other at a continuous speed, the article is exposed at a plurality of irradiation intensities of an electron beam by changing a transmittance of an electron optical system for forming the electron beam irradiation spot on the article.
Abstract:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
Abstract:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
Abstract:
An electron beam lithographic method for describing a fine pattern on the surface of a semiconductor specimen by irradiating the surface of the specimen with an electron beam.The electron beam generated by an electron gun is converged onto a specimen through electron lenses. When a step of lithography has been finished, the electron beam is blanked by a shaping deflector that shapes the electron beam and that is disposed between a first shaping iris and a second shaping iris, so that the specimen is not damaged by the reflected electron beam or by the scattered electrons.
Abstract:
A pattern generator for supplying beam deflection and blanking signals in an electron beam lithography system which writes polygon pattern features by sweeping a beam of rectangular cross-section over each polygon and simultaneously varying the length of the rectangular cross-section. The pattern generator converts polygon size and shape data to an upper shape signal and a lower shape signal. The shaping signals are subtracted to provide a beam length signal. The lower shape signal controls the beam position during writing of the polygon. The pattern generator further includes a ramp generator for sweeping the beam over the polygon. The ramp signal and shaping signals are synchronized by detecting the points in the sweep at which polygon turn points occur. The shape signal generators utilize interleaved operation for high speed. A blanking circuit provides uniform exposure of pattern features by controlling the width of the rectangular beam. The beam is ramped on and off at a rate which matches the rate of the sweep signal.
Abstract:
An all-electrostatic variable spot charged particle (electron) beam shaping sub-system which is compact and of much smaller size than known similar systems designed for the same purpose and operating with magnetic lenses. The improved electrostatic variable spot-shaping sub-system does not require mechanical rotation of the spot-shaping apertures for maintaining alignment or orientation. The improved sub-system includes both beam steering and beam blanking requiring less than 3 volts for operation of the blanking controls to turn the beam on and off. The novel system easily accomodates a variety of different beam-shaping apertures for use as the second beam shaping aperture in the sub-system including rectilinear triangles of different orientation to provide smooth 45 degree pattern delineation, rectangles, squares, and even different diameter circles where such configurations are required by a particular pattern to be written in the target plane.
Abstract:
Provided is a method of adjusting an electron-beam irradiated area in an electron beam irradiation apparatus that deflects an electron beam with a deflector to irradiate an object with the electron beam, the method including: emitting an electron beam while changing an irradiation position on an adjustment plate by controlling the deflector in accordance with an electron beam irradiation recipe, the adjustment plate detecting a current corresponding to the emitted electron beam; acquiring a current value detected from the adjustment plate; forming image data corresponding to the acquired current value; determining whether the electron-beam irradiated area is appropriate based on the formed image data; and updating the electron beam irradiation recipe when the electron-beam irradiated area is determined not to be appropriate.
Abstract:
A multi charged particle beam writing method includes, shifting a writing position of each corresponding beam to a next writing position by performing another beam deflection of multi charged particle beams, in addition to the beam deflection for a tracking control, while continuing the beam deflection for the tracking control after the maximum writing time has passed; emitting the each corresponding beam in the “on” state to the next writing position having been shifted of the each corresponding beam, during a corresponding writing time while continuing the tracking control; and returning a tracking position such that a next tracking start position is a former tracking start position where the tracking control was started, by resetting the beam deflection for the tracking control after emitting the each corresponding beam to the next writing position having been shifted at least once of the each corresponding beam while continuing the tracking control.