Abstract:
본 발명은 플립 칩 본딩(flip chip bonding)이나 칩 스케일 패키지(CSP; Chip Scale Package)의 구조에서 외부로부터의 기계적 충격에 의한 반도체 칩의 손상을 방지하기 위한 반도체 칩 제조 방법에 관한 것이다. 본 발명에 따른 반도체 칩 제조 방법은, 먼저 활성면의 반대쪽 면에 폴리머층이 형성된 웨이퍼의 밑면에 물리적인 복원력을 갖는 유연성 테이프를 부착하고, 그 웨이퍼를 각각의 반도체 칩으로 절단한 후 테이프를 잡아 늘여 반도체 칩간에 틈이 형성되도록 하고 그 틈에 폴리머를 채워 넣는다. 다음으로, 폴리머가 경화되기 전에 상기 반도체 칩들간 소정 간격을 유지시키면서 상기 반도체 칩들 사이에 폴리머가 일정 부분 형성되어 있는 상태로 유연성 테이프를 복원시키고, 그 후에 폴리머를 경화시키며, 각각의 반도체 칩의 측면에 경화된 폴리머(polymer)가 존재하도록 하여 각각의 반도체 칩을 절단한다. 이에 따르면, 칩 스케일 패키지나 플립 칩 본딩에 적용되는 반도체 칩이 폴리머층에 의해 둘러싸여져 노출면이 없게되어 외부환경에 의한 물리적인 손상이나 화학적인 손상이 직접 반도체 칩에 가해지지 않게 된다. 따라서, 종래와 같은 반도체 칩의 칩핑이나 크랙의 발생이 방지되어 보다 신뢰성 있는 칩 스케일 패키지나 플립 칩 본딩의 구현이 가능하게 된다.
Abstract:
본 발명은 댐이 형성된 반도체 장치 및 그 반도체 장치의 실장 구조에 관한 것으로, 플립 칩 본딩만으로 종래의 언더필 공정의 진행 없이 언더필 공정과 동일한 수준의 신뢰성을 확보할 수 있도록 하기 위해서, 솔더 범프가 형성되는 영역의 주위에 솔더 댐이 형성된 반도체 장치를 제공함으로써, 반도체 장치를 기판에 플립 칩 본딩할 때, 솔더 범프와 더불어 솔더 댐이 기판에 접합되는 반도체 장치 및 그 반도체 장치의 실장 구조를 제공한다. 즉, 반도체 장치를 기판에 플립 칩 본딩할 때, 솔더 범프와 더불어 솔더 댐이 기판에 접합되기 때문에, 반도체 장치와 기판의 열팽창계수 차이에 따른 열응력이 솔더 범프와 솔더 댐으로 분산시킬 수 있다. 따라서 종래에 반도체 장치를 기판에 플립 칩 본딩한 이후에 진행하였던 언더필 공정을 생략할 수 있다.
Abstract:
소정의 임피이던스를 가지는 전송선을 통하여 데이타 입출력동작을 수행하는 본 발명의 집적회로장치는, 상기 전송선에 연결된 다수개의 드라이버 유닛들을 가지는 드라이브회로와; 출력데이타신호를 입력하며 출력활성화신호와 상기 전송선의 임피이던스의 상태에 관련된 임피이던스코드신호들에 응답하여 발생된 복수의 제어신호들을 상기 드라이브회로에 인가하는 컨트롤러를 구비하며; 상기 제어신호들에 각각 응답하여 적어도 하나의 드라이버 유닛이 구동되며 상기 각 드라이버는 소정의 입력버퍼에 연결된 온칩터미네이션 회로를 포함한다.
Abstract:
PURPOSE: A method of forming a bump without surface defects is provided to remove simply a second UBM(Under Bump Metallurgy) layer while removing a first and second photoresist pattern by using a lift-off manner. CONSTITUTION: A first photoresist pattern(115) with an opening(113) for exposing a pad(105) is formed on a semiconductor wafer(100). By depositing UBM metal thereon, a first UBM layer(120a) is formed on the pad and a second UBM layer(120b) is formed on the first photoresist pattern. A second photoresist pattern(125) for exposing the first UBM layer to the outside is formed thereon. A solder bump(130) is filled in the opening. By using a lift-off manner, the second UBM layer is removed therefrom.
Abstract:
PURPOSE: A semiconductor memory device is provided to generate a variable internal clock signal according to its operation mode which has a period two times of an external clock signal. CONSTITUTION: An array(110) has memory cells arranged in rows and columns. An address input circuit(120) receives an external address in response to an address clock signal(CKA). A selection circuit selects memory cells in response to an address from the address input circuit. A read-out circuit(160) reads data from the selected memory cells. A data output circuit(170) outputs data from the read circuit to the external in response to the first and the second data clock signal(CKR,CKF). An internal clock generator circuit(180) generates the address clock signal and the first and the second data clock signals in response to an external clock signal and its complementary clock signal. The internal clock signal generator circuit generates the address clock signal and the first and the second data clock signals having a period which is twice of the external clock signal's period.
Abstract:
PURPOSE: A method for fabricating a solder bump structure is provided to increase crack resistance and lengthen a propagation path of crack in a bump material by forming a protrusion functioning as an obstacle to the propagation of crack. CONSTITUTION: An intermediate layer(406,407) is electro-deposited on a contact pad(402). Photoresist is formed on the intermediate layer. The photoresist is patterned to form one or more opening that partially exposes the surface of the intermediate layer. The one or more opening of the photoresist is filled with metal. The photoresist is removed so that the metal forms one or more metal protrusion(411) protruding over the surface of the intermediate layer. The one or more metal protrusion is buried by a solder material formed on the intermediate layer.
Abstract:
PURPOSE: A CMOS receiver of an integrated circuit is provided to have a reliability by simply configuring the circuits without utilizing an additional clock circuit. CONSTITUTION: A CMOS receiver of an integrated circuit includes an input circuit(10), a first and a second sensing nodes, a precharge circuit(70), a latch circuit(30), a delay circuit(50), a first logic circuit and a second logic circuit. The input circuit(10) receives the reference voltage signal and the input signal. The precharge circuit(70) makes the first and the second sensing nodes a predetermined voltage level when the first clock signal becomes a first state. The latch circuit(30) generates the voltage difference between the first and the second sensing nodes in response to the voltage level of the input signal when the first clock signal becomes to the second state. The delay circuit(50) generate the second clock signal by delaying the first clock signal to a predetermined time. The first logic circuit generates a first output signal in response to the first sensing node of the delay circuit(50) during the activation of the second clock signal. And, the second logic circuit generates the second output signal in response to the second sensing node during the activation of the second clock signal.
Abstract:
The invention relates to a semiconductor memory device and a method for generating an internal clock, the circuit of the semiconductor device including: a receiver for receiving an external clock; a delay compensation circuit for receiving an output of the receiver and delaying it by as much as the compensation delay time and control delay time subtracted out of a cycle of the external clock; an external control delay part for delaying an output of the delay compensation circuit by as much as the control delay time and unit increase/decrease delay time in response to an external control code; and an internal clock driver for driving an output of the external control delay part and generating an internal clock centered to externally applied data, thereby performing an accurate timing control to an external clock without loss of performance.
Abstract:
A synchronous mirror delay circuit comprises a delay monitor circuit for delaying a reference clock signal from a clock buffer circuit. A forward delay array sequentially delays an output clock signal of the delay monitor circuit to generate delay clock signals, and the mirror control circuit detects a delay clock signal synchronized with the reference clock signal among the delay clock signals. A backward delay array delays a clock signal delayed by the mirror control circuit, and a clock driver receives an output clock signal of the backward delay array to generate the internal clock signal. A locking range control circuit controls a delay time of each clock signal transferred to the delay monitor circuit by the amount of a delay time of each signal transferred to the clock driver when none of delay clock signals of the forward delay array is synchronized with the reference clock signal.
Abstract:
An impedance updating apparatus includes a terminator circuit for receiving and terminating an external input signal, the terminator circuit having an up-terminator and a down-terminator; and an update controller for separately controlling the up-terminator and the down-terminator based on the level of the external input signal. The update controller includes at least one latch for latching impedance codes of a programmable impedance controller, the impedance codes being used for controlling transistors in the up-terminator and down-terminator. The update controller performs updating impedance of the up-terminator, or down-terminator when an up-update enable signal or a down-update enable signal and a level of the external input signal correspond to a predetermined condition. And the update controller performs updating impedance of the up-terminator, or down-terminator in response to a level of the external input signal during set-up or hold time only. An impedance updating method of termination circuit having up/down terminators and a separate update controller for detecting terminator through which minimum current flows in response to level of an external input signal is also provided which includes the steps of: determining signal levels of an external input signal to thereby detect a terminator through which minimum current flows between the up or down terminator; and impedance updating the detected terminator through which minimum current flows.