Abstract:
L'invention est relative à un procédé de fabrication d'un dispositif électromécanique sur au moins un substrat comprenant au moins un élément actif caractérisé en ce qu'il comporte : a) la réalisation d'un substrat hétérogène comprenant une première partie (1, 3, 6), une couche d'interface (8) et une seconde partie (9), la première partie (1, 3, 6) comportant une ou plusieurs zones enterrées (2 1 , 3 1 , 5 1 , 51) en sandwich entre une première (1), et une deuxième (6) région réalisées dans un premier matériau monocristallin, la première région (1) s'étendant jusqu'à la surface (1') de la première partie, et la deuxième région (6) s'étendant jusqu'à la couche d'interface (8, 8'), au moins une dite zone enterrée (2 1 , 3 1 , 5 1 , 51) étant au moins en partie dans un deuxième matériau monocristallin de manière à la rendre sélectivement attaquable par rapport à la première (1) et la deuxième (6) région ; b) la réalisation depuis la surface (1") de la première partie et à travers ladite première région (1) d'ouvertures (20) débouchant sur au moins une dite zone enterrée (2 1 , 3 1 , 5 1 , 51) ; c) la gravure au moins partielle d'au moins une zone enterrée (2 1 , 3 1 , 5 1 , 51) pour former au moins une cavité (14), de manière à définir au moins un élément actif qui est au moins une partie de la deuxième région (6) entre une dite cavité (14) et ladite couche d'interface (8, 8') ;
caractérisé en ce que les première (1, 3, 6) et seconde (9) parties du substrat sont constituées respectivement d'un premier et d'un deuxième substrats assemblés par collage dont l'un au moins porte au moins sur une partie de sa surface, une dite couche d'interface (8).
Abstract:
The invention relates to the production of multilayer microcomponents comprising one or more layers, each consisting of a material M chosen from metals, metal alloys, glasses, ceramics and glass-ceramics. The method consists in depositing, on a substrate, one or more layers of an ink P and one or more layers of an ink M, each layer being deposited in a predetermined pattern, each ink layer being at least partially consolidated before deposition of the next layer, in completely consolidating the partially consolidated layers of ink M after their deposition, and in completely or partially removing the material of each of the layers of ink P. An ink P consists of a thermosetting resin containing a mineral filler or of a mixture comprising a mineral material and an organic binder. An ink M consists of a mineral material that is a precursor of the material M and an organic binder. The inks are deposited by casting or by extrusion.
Abstract:
Thermally induced frequency variations in a micromechanical resonator are actively or passively mitigated by application of a compensating stiffness, or a compressive/tensile strain. Various composition materials may be selected according to their thermal expansion coefficient and used to form resonator components on a substrate. When exposed to temperature variations, the relative expansion of these composition materials creates a compensating stiffness, or a compressive/tensile strain.
Abstract:
A microelectromechanical structure having a ceramic substrate formed from low temperature co-fired ceramic sheets. A low loss photodefinable dielectric planarizing layer is formed over one surface of the ceramic substrate. This layer can be a sacrificial layer or a subsequent sacrificial layer added. A photodefined conductor is printed over the low loss dielectric planarizing layer and formed with the sacrificial layer into a structural circuit component. A switch is formed with a biasing actuator and deflectable member formed over the biasing actuator and moveable into open and closed circuit positions.
Abstract:
A new bulk resonator may be fabricated by a process that is readily incorporated in the traditional fabrication techniques used in the fabrication of monolithic integrated circuits on a wafer. The resonator is decoupled from the wafer by a cavity etched under the resonator using selective etching through front openings (vias) in a resonator membrane. In a typical structure the resonator is formed over a silicon wafer by first forming a first electrode, coating a piezoelectric layer over both the electrode and the wafer surface and forming a second electrode opposite the first on the surface of the piezoelectric layer. After this structure is complete, a number of vias are etched in the piezoelectric layer exposing the surface under the piezoelectric layer to a selective etching process that selectively attacks the surface below the piezoelectric layer creating a cavity under the resonator.
Abstract:
A packaged capacitive MEMS sensor device 100 includes at least one capacitive MEMS sensor element with at least one capacitive MEMS sensor cell 100a including a first substrate 101 having a thick 106 and a thin 107 dielectric region. A second substrate with a membrane layer 120 is bonded to the thick dielectric region and over the thin dielectric region to provide a MEMS cavity 114. The membrane layer provides a fixed electrode 120a and a released MEMS electrode 120b over the MEMS cavity. A first through-substrate via (TSV) 111 extends through a top side of the MEMS electrode and a second TSV 112 through a top side of the fixedelectrode. A metal cap 132 is on top of the first TSV and second TSV. A third substrate 140 including an inner cavity 144 and outer protruding portions 146 framing the inner cavity is bonded to the thick dielectric regions. The third substrate together with the first substrate seals the MEMS electrode.
Abstract:
L'invention a pour objet : - un procédé de détection d'une perturbation par rapport à un état initial, d'un dispositif comprenant au moins un élément mécanique résonant présentant un paramètre physique sensible à une perturbation telle que ladite perturbation modifie la fréquence de résonance dudit élément mécanique résonant ; - un dispositif de détection d'une perturbation par cycle hystérétique comprenant au moins un résonateur électromécanique à comportement non linéaire et des moyens d'actionnement et de détection du signal de réception via un transducteur pour analyser le signal de réponse mettant en oeuvre le procédé. L'invention a aussi pour objet un capteur de masse et un spectromètre de masse utilisant le dispositif de l'invention.
Abstract:
A resonant transducer includes a silicon single crystal substrate, a silicon single crystal resonator disposed over the silicon single crystal substrate, a shell made of silicon, surrounding the resonator with gap, and forming a chamber together with the silicon single crystal substrate, an exciting module configured to excite the resonator, a vibration detecting module configured to detect vibration of the resonator, a first layer disposed over the chamber, the first layer having a through-hole, a second layer disposed over the first layer, a third layer covering the first layer and the second layer, and a projection extending from the second layer toward the resonator, the projection being spatially separated from the resonator, the projection, being separated from the first layer by a first gap, the second layer being separated from the first layer by a second gap, the first gap is communicated with the second gap.
Abstract:
A method of manufacturing a resonant transducer having a vibration beam includes: (a) providing an SOI substrate including: a first silicon layer; a silicon oxide layer on the first silicon layer; and a second silicon layer on the silicon oxide layer; (b) forming a first gap and second gap through the second silicon layer by etching the second silicon layer using the silicon oxide layer as an etching stop layer; (c) forming an impurity diffusion source layer on the second silicon layer; (d) forming an impurity diffused layer in a surface portion of the second silicon layer; (e) removing the impurity diffusion source layer through etching; and (f) removing at least a portion of the silicon oxide layer through etching such that an air gap is formed between the first silicon layer and a region of the second silicon layer surrounded by the first and second gaps.