Abstract:
Vorgestellt wird eine Methode zur Herstellung mikrostrukturierter Vorrichtungen für Mikro-Elektro-Mechanische-Systeme (MEMS). Zur Vergrößerung des maximalen Aspektverhältnisses bedingt durch physikalische oder chemische Mikrostrukturierungsmethoden, wird vorgeschlagen, relativ zueinander beweglich strukturierte flächige Elemente der Vorrichtung von einer ersten relativen Bezugslage zueinander (Strukturierungsposition) lateral in eine zweite Bezugslage (Betriebsposition) dauerhaft oder irreversibel überzuführbar zu gestalten. Dadurch können zwischen strukturierten Wandabschnitten höhere Grabenkapazitäten gebildet werden. Die Bezugslagenänderung kann durch integrierte Antriebe oder Energiezuführung von außen ermöglicht werden, und erfolgt in einer von der Messrichtung wesentlich unterschiedlichen Richtung. Neben mechanischer Arbeit, Energie aus elektrischen oder magnetischen Feldern, kann Wärme zur Ortsverschiebung in Antrieben durch die Kraftwirkung auf ein Element oder hervorgerufene Längenänderungen dienen. Dieses Verfahren ermöglicht die Herstellung hochsensitiver Sensoren für kleinste Anregungssignale oder die Herstellung von sparsamen Aktuatoren mit äußerst hohem Wirkungsgrad in Form von dämpfungsarmen, flächenoptimierten, hoch-kapazitiven Wandlern, sowie einstellbare Vertikalkondensatoren mit hoher Kapazität.
Abstract:
A micromechanical component for a sensor or microphone device. An electrode surface of a first electrode structure is aligned with a second electrode structure. A substructure of the first electrode structure is entirely made of at least one electrically conductive material. The electrode surface and an opposite surface of the first electrode structure are outer surfaces of the substructure. A stop structure protruding from the electrode surface towards the second electrode structure is formed on the first electrode structure. The first electrode structure includes an insulating region which extends from the electrode surface to the opposite surface of the first electrode structure. The stop structure is formed either as a projection of the at least one insulating region protruding from the electrode surface towards the second electrode structure or is bordered by the at least one insulating region.
Abstract:
In described examples, a cavity is formed between a substrate and a cap. One or more access holes are formed through the cap for removing portions of a sacrificial layer from within the cavity. A cover is supported by the cap, where the cover is for occulting the one or more access holes along a perspective. An encapsulant seals the cavity, where the encapsulant encapsulates the cover and the one or more access holes.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
A variable capacitance device that includes a semiconductor substrate, a redistribution layer disposed on a surface of the semiconductor substrate, and a plurality of terminal electrodes including first and second input/output terminals, a ground terminal and a control voltage application terminal. Moreover, a variable capacitance element section is formed in the redistribution layer from a pair of capacitor electrodes connected to the first and second input/output terminals, respectively, and a ferroelectric thin film disposed between the capacitor electrodes. Further, an ESD protection element is connected between the one of the input/output terminals and the ground terminal is formed on the surface of the semiconductor substrate.
Abstract:
According to one embodiment, an electronic device includes a base region, an element portion located on the base region, the element portion including a movable portion, and a protective film overlying the element portion and forming a cavity on an inner side of the protective film. The protective film includes a first protective layer and a second protective layer located on the first protective layer. A hole extends in a direction parallel to a main surface of the base region, and the second protective layer covers the hole.
Abstract:
An electrostatic actuator includes: a fixed driving electrode that is disposed on a silicon substrate; a movable driving electrode that is disposed so as to face the fixed driving electrode and approaches the fixed driving electrode with an electrostatic force generated between the movable driving electrode and the fixed driving electrode; and a pair of spacers that comes in contact with the movable driving electrode in an approaching state in which the fixed driving electrode and the movable driving electrode approach each other and forms a prescribed air gap between the fixed driving electrode and the movable driving electrode, wherein each of the spacers has a spacer electrode portion that comes in contact with the movable driving electrode via an insulator and has the same potential as one of the electrodes at least in the approaching state.