Abstract:
An electronic circuit contains a circuit board with conducting tracks to which one or more electronic components with conducting contacts are positioned overlying portions of the conducting tracks and each such electronic component is held in place by a clamp that covers and is contact with the top surface of the electronic components so as to hold their conducting contacts in electrical contact with the conducting tracks of the circuit board. The clamp can include a resilient layer held between the top surface of electronic components and a rigid clamping sheet.
Abstract:
An electronic component mounting structure includes a board and an electronic component mounted on a surface of the board. The board includes lands. The electronic component includes a body and terminals extending from the body. Each terminal is electrically connected to a corresponding one of the lands of the board. The terminal has a first terminal portion extending along the surface of the board and a second terminal portion extending toward the surface of the board. Each land includes a land portion electrically soldered to the first terminal portion and a blind hole for receiving the second terminal portion. The first terminal portion is soldered to the land portion in a reflow process under the condition that the second terminal portion is inserted in the blind hole.
Abstract:
An electronic device includes a printed circuit board having lands and an electronic element having a body and terminals. First and second lands provide a zigzag pattern. Each first land is coupled with the first terminal, and each second land is coupled with the second terminal. The second terminal includes a first parallel member, a first connection member, a second parallel member and a first mounting member. The first parallel member is completely embedded in the body, or another part of the first parallel member exposed from the body is shorter than the second parallel member. A second height between the second parallel member and the printed circuit board is smaller than a first height between the first parallel member and the printed circuit board.
Abstract:
A pressfit terminal is to be inserted into a through hole defined in a substrate for electrically contacting with the through hole. The pressfit terminal includes a terminal main body and at least three protrusion portions. The at least three protrusion portions protrude outwardly from a surface of the terminal main body. At least part of the protrusion portions are arranged at intervals in a direction intersecting with an insertion direction of the terminal main body.
Abstract:
A method is provided, comprising the steps of inserting the contact terminal section of the contact provided in a socket into a hole provided in the substrate, sliding the socket relative to a surface of the substrate on which the hole is formed, while maintaining the state in which the contact terminal section is inserted into the hole provided in the substrate, and fixing the socket and the contact terminal section to the substrate, while maintaining the state in which the socket and the contact terminal section are made to slide.
Abstract:
An electrical connector (10) of the type having an array of signal contacts (22) surface mountable to pads of a circuit board (20), with at least one ground bus (40) having a plurality of post sections (44,50,52) insertable into through holes (34) of the circuit board. At least two of the post sections (50,52) include protuberances (54,56) proximate free ends thereof adapted to bear against side walls of the respective through holes upon insertion thereinto, for deflection of the shanks (62,64) of the post sections in the opposite direction. The protuberance of each of the at least two post sections extends in opposed directions along the row of posts, thus cooperating to act as a clamp of modest force to retain the connector to the board prior to contact soldering. The deflectable shank (62,64) preferably has a reduced cross-sectional area at root (66,68) facilitating deflection in the plastic region.
Abstract:
An electrical connector assembly is provided for mounting on a printed circuit board which includes at least a pair of mounting post-receiving holes and at least one solder tail-receiving aperture. The assembly includes a housing having at least a pair of mounting posts for positioning in the holes in the printed circuit board. At least one contact member is mounted on the housing and includes a solder tail for positioning in the aperture in the printed circuit board. The solder tail has a generally straight side and a projecting hook on an opposite side for retaining the connector assembly on the printed circuit board. The width of the solder tail between the straight side and the outermost point of the hook on the opposite side is no greater than the width of the aperture, and the centerline of the solder tail between its sides is offset, in the direction of the hook, relative to the centerline of the aperture when the mounting posts are aligned with the holes in the printed circuit board.
Abstract:
A device for mounting an element (10) on a board (20) which element (10) comprises at least one fixing lug (11) which is to engage in a slot (21) formed in the said board (20). According to the invention, the fixing lug (11) comprises a projection (12) engaging the board (20) inside the slot, and having a thickness which is at least equal to the width (1) of the slot (21). The invention is used to mount housings on printed circuit boards.