Abstract:
A method for etching a desired complex pattern (50), in a first face of a substrate, comprising the following steps: - simultaneous etching of at least one first and one second sub-pattern through the first face of the substrate, the etched sub-patterns being separated by at least one separation wall, the width of the first sub-pattern being greater than the width of the second sub-pattern on the first face, and the depth of the first sub-pattern being greater than the depth of the second sub-pattern in a direction perpendicular to said first face, - a step of removing or eliminating said separation wall to reveal the desired complex pattern (50).
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
Procédé de réalisation d'une structure comportant une partie active comportant une première et une deuxième zone suspendue d'épaisseurs différentes à partir d'un premier substrat comportant, ledit procédé comportant les étapes : a) usinage de la face avant du premier substrat pour définir les contours latéraux d'au moins une première zone suspendue suivant une première épaisseur inférieure à celle du premier substrat, b) formation d'une couche d'arrêt de gravure de la première zone suspendue sous ladite zone suspendue, pour cela une étape préalable de retrait du matériau semi-conducteur disposé sous la première zone suspendue a lieu ; c) formation sur la face avant du premier substrat d'une couche sacrificielle, d) usinage à partir de la face arrière du premier substrat jusqu'à dégager ladite couche sacrificielle pour réaliser au moins une deuxième zone suspendue atteindre la couche d'arrêt de la première zone suspendue, e) libération des première et deuxième zones suspendues.
Abstract:
Procédé de réalisation d'un dispositif (100) à au moins une membrane suspendue, comportant au moins les étapes suivantes : - réalisation d'une tranchée à travers une première couche sacrificielle (104) et une seconde couche (106) disposée sur la première couche sacrificielle (104), la tranchée entourant complètement au moins une partie de la première couche sacrificielle (104) et au moins une partie (110) de la seconde couche (106), - remplissage de tout ou partie de la tranchée par au moins un matériau (116) apte à résister à au moins un agent de gravure, - gravure de ladite partie de la première couche sacrificielle (104) par ledit agent de gravure à travers au moins une ouverture réalisée dans la seconde couche (106),
ladite partie (110) de la seconde couche (106) formant au moins une partie de la membrane suspendue.
Abstract:
A technique (400) for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer (404), with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees (406), with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer (408).
Abstract:
A method for fabricating a MEMS device having a fixing part, driving part, electrode part, and contact parts on a substrate. A driving electrode is formed on the substrate, and then an insulation layer is formed thereon. The insulation layer is patterned, and the regions of the insulation layer in which the fixing part and the contact parts are formed are etched. A metal layer is formed on the substrate. The metal layer is planarized down to the insulation layer, and the driving electrode is formed. A sacrificial layer is formed on the substrate, and a groove-shaped space is formed in a region in which the fixing part is formed. A MEMS structure layer is formed on the sacrificial layer. Sidewalls are formed in the groove-shaped space, and the fixing part and driving part are formed, leaving the sacrificial layer underneath the fixing part.
Abstract:
Disclosed is a method enabling cavities (7) having an optically transparent wall to be produced in a component (10) using standard microsystem engineering methods in a simple and economical manner. Firstly, a silicon area which is surrounded on all sides by an optically transparent outer layer is produced. At least one opening (6) is subsequently produced in the outer layer. Said opening (6) is used to dissolve out the silicon surrounded by the outer layer in order to create a cavity (7) inside the outer layer. The outer layer acts as a layer which stops etching.
Abstract:
The invention relates to a method for the production of a membrane, which only requires two lithographic steps. Said method has the advantage that membranes which are extensively compatible with existing CMOS, BiCMOS and bipolar processes can be produced. Furthermore membranes produced thus do not place increased requirements on the packages used, such that an economical production of the total system is guaranteed.