Abstract:
A microfluidic valve structure (10 or 10') is provided. The valve structure (10) includes a valve body (15) having a fluid flow passage (22) formed therein for allowing fluid to flow therethrough. A valve boss (24) is configured to move relative to a valve seat (26) to open and close the fluid flow passage. A plurality of flexible support arms (30A-30D) extend between a wall (20) of the valve body (15) and the valve boss (24) for supporting the valve boss (24) relative to the valve body (15) such that the valve boss (24) engages and disengages the valve seat (26) to close and open the passage.
Abstract:
A process using integrated sensor technology in which a micromachined sensing element (12) and signal processing circuit (14) are combined on a single semiconductor substrate (20) to form, for example, an infrared sensor (10). The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm (16), after the circuit fabrication process is completed. The process generally entails forming a circuit device (14) on a substrate (20) by processing steps that include forming multiple dielectric layers (34,36,38,44,46) and at least one conductive layer (40,50) on the substrate (20). The dielectric layers (34,36,38,44,46) comprise an oxide layer (34) on a surface of the substrate (20) and at least two dielectric layers (36,46) that are in tension, with the conductive layer (40,50) being located between the two dielectric layers (36,46). The surface of the substrate (20) is then dry etched to form a cavity (32) and delineate the diaphragm (16) and a frame (18) surrounding the diaphragm (16). The dry etching step terminates at the oxide layer (34), such that the diaphragm (16) comprises the dielectric layers (34,36,38,44,46) and conductive layer (40,50). A special absorber (52) is preferably fabricated on the diaphragm (16) to promote efficient absorption of incoming infrared radiation.
Abstract:
A technique (400) for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer (404), with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees (406), with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer (408).
Abstract:
A method of making a silicon integrated sensor on an SOI substrate is provided. The method includes the step of providing a substrate having an insulation layer on a top surface, and providing a silicon epitaxial layer on top of the insulation layer. The method also includes the steps of forming a first trench extending through the epitaxial layer and reaching the insulation layer so as to isolate a first portion of the epitaxial layer from a second portion of the epitaxial layer, and disposing a fill material within the first trench. The method also includes the steps of forming one or more electrical components on the first portion of the epitaxial layer, and forming one or more contacts on the second portion of the epitaxial layer. The method further includes the step of forming one or more second trenches in the second portion of the epitaxial layer so as to provide one or more moving element within the second portion of the epitaxial layer, wherein the one or more movable elements serve as sensing element.
Abstract:
A process for making a microelectromechanical device having a moveable component defined by a gap pattern in a semiconductor layer of a silicon-on-insulator wafer (10) involves the use of a plurality of deep reactive ion etching steps at various etch depths that are used to allow a buried oxide layer (14) of the silicon-on-insulator wafer (10) to be exposed in selected areas before the entire moveable component of the resulting device is freed for movement. This method allows wet release techniques to be used to remove the buried oxide layer (14) without developing stiction problems. This is achieved by utilizing deep reactive ion etching to free the moveable component after a selected portion of the buried oxide layer (14) has been removed by wet etching.
Abstract:
A technique (400) for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer (404), with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees (406), with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer (408).
Abstract:
A technique (500) for manufacturing a micro-electro-mechanical (MEM) structure includes a number of steps. Initially, a substrate is provided (502). Next, a plurality of trenches are etched into the substrate with a first etch (508). Then, a charging layer is formed at a bottom of each of the trenches to form undercut trenches (510). Finally, a second etch is provided into the undercut trenches. The charging layer causes the second etch to laterally etch foots in the substrate between the undercut trenches (512). The footers undercut the substrate to release a portion of the substrate for providing a movable structure between the undercut trenches and above the footers.
Abstract:
A process of forming a capacitive audio transducer (10), preferably having an all-silicon monolithic construction that includes capacitive plates (22,24) defined by doped single-crystal silicon layers (18,62). The capacitive plates (22,24) are defined by etching the single-crystal silicon layers (18,62), and the capacitive gap (30) therebetween is accurately established by wafer bonding, yielding a transducer (10) that can be produced by high-volume manufacturing practices.
Abstract:
A process using integrated sensor technology in which a micromachined sensing element (12) and signal processing circuit (14) are combined on a single semiconductor substrate (20) to form, for example, an infrared sensor (10). The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm (16), after the circuit fabrication process is completed. The process generally entails forming a circuit device (14) on a substrate (20) by processing steps that include forming multiple dielectric layers (34,36,38,44,46) and at least one conductive layer (40,50) on the substrate (20). The dielectric layers (34,36,38,44,46) comprise an oxide layer (34) on a surface of the substrate (20) and at least two dielectric layers (36,46) that are in tension, with the conductive layer (40,50) being located between the two dielectric layers (36,46). The surface of the substrate (20) is then dry etched to form a cavity (32) and delineate the diaphragm (16) and a frame (18) surrounding the diaphragm (16). The dry etching step terminates at the oxide layer (34), such that the diaphragm (16) comprises the dielectric layers (34,36,38,44,46) and conductive layer (40,50). A special absorber (52) is preferably fabricated on the diaphragm (16) to promote efficient absorption of incoming infrared radiation.