Abstract:
실리콘 기판 상에 플라스틱 입자들을 균일한 무작위 패턴으로 서로 이격하여 위치시키는 단계; 상기 플라스틱 입자들 사이에 촉매층을 형성하는 단계; 상기 플라스틱 입자들을 제거하는 단계; 상기 촉매층과 접촉하는 실리콘 기판 부위를 수직적으로 식각하는 단계; 및 상기 촉매층을 제거하는 단계를 포함하는, 실리콘 나노 와이어 어레이의 제조방법이 제공된다. 본 발명에 따르면, 공정이 단순하고 비용효과적이며 대면적 공정으로 대량생산이 가능하고 자원제한적인 장소에서도 나노 와이어의 제조가 가능하며, 나노 와이어의 구조를 독립적으로 제어할 수 있다.
Abstract:
The present invention provides a method to manufacture a silicon diaphragm, wherein an oxide layer (12) is embedded in the silicon substrate. (14) that acts as a support during the grinding and polishing processes. Further to that, the formation of the embedded oxide ( 12 ) is fully compatible with standard integrated circuit processing.
Abstract:
The present invention provides a method to manufacture a silicon diaphragm, wherein an oxide layer (12) is embedded in the silicon substrate. (14) that acts as a support during the grinding and polishing processes. Further to that, the formation of the embedded oxide ( 12 ) is fully compatible with standard integrated circuit processing.
Abstract:
A method for forming a hollow microneedle structure includes processing the front side of a wafer (10) to form at least one microneedle (30) projecting from a substrate with a first part (18) of a through-bore, formed by a dry etching process, passing through the microneedle and through a part of a thickness of the substrate. The backside of the wafer (10) is also processed to form a second part (16) of the through-bore by a wet etching process.
Abstract:
Systems and methods for etching topographic features in non- crystalline or metallic substrates are provided. A protective material is placed and patterned on a surface of the substrate to define exposed and protected regions of the substrate for etching in a liquid etchant having etching rates that are thermally activated. A nonuniform temperature profile is imposed on the substrate so that the temperatures and hence the etching rates at surfaces in the exposed regions are higher than those in the protected regions. Arrangements for imposing the nonuniform temperature profile include heating designated portions of the substrate with light radiation. Alternatively, the non-uniform temperature profile is developed as etching progresses by passing current pulses through the substrate in a manner that causes geometrically non-uniform heating of the substrate.
Abstract:
Systems and methods for etching topographic features in non- crystalline or metallic substrates are provided. A protective material is placed and patterned on a surface of the substrate to define exposed and protected regions of the substrate for etching in a liquid etchant having etching rates that are thermally activated. A nonuniform temperature profile is imposed on the substrate so that the temperatures and hence the etching rates at surfaces in the exposed regions are higher than those in the protected regions. Arrangements for imposing the nonuniform temperature profile include heating designated portions of the substrate with light radiation. Alternatively, the non-uniform temperature profile is developed as etching progresses by passing current pulses through the substrate in a manner that causes geometrically non-uniform heating of the substrate.
Abstract:
The invention relates to a method for fabricating a nanostructure, comprising the selection of a carrier for the material of the nanostructure during the formation of the same, wherein the carrier is provided with a shape that corresponds with the final shape of the nanostructure, and wherein the nanostructure material is applied on the carrier in a predetermined thickness and following the shape of the carrier. The material is removed substantially isotropically from the side facing away from the carrier, with the result that material that is not removed is left on a place or places determined by the shape of the carrier.
Abstract:
A method of fabricating a device having a desired non-planar surface or profile and device produced thereby are provided. A silicon wafer is first coated with silicon nitride, patterned, and DRIE to obtain the desired etch profile. Silicon pillars between trenches are then etched using an isotropic wet etch, resulting in a curved well. The wafer is then oxidized to ∼2 µm to smooth the surface of the well, and to protect the well from an ensuring planarization process. The nitride is then selectively removed, and the wafer surface is planarized by removing the Si left in the field regions using either a maskless DRIE or CMP. Finally, the oxide is etched away to produce a wafer with a curved surface.
Abstract:
An apparatus and method for suspending a movable structure form a support structure wherein first and second flat and thin arcuately shaped flexures are formed having spaced apart substantially planar and parallel opposing surfaces, each of the first and second flexures being structured for connection between a support structure and a movable structure to be suspended from the support structure and being aligned along a common axis of rotation between the support structure and the movable structure. Two half-circular flexures may be arranged to form a circular shape or may be interconnected in their middle region to form a single x-shaped suspension member.