Abstract:
Systems and associated methods and techniques for illuminating and imaging a device, such as a microfluidic or microarray device, are described herein. An optical source that illuminates the planar surface at an oblique angle can be used with optical components, such as an offset optical shaping rod and a wedge prism, used to provide uniform illumination across the planar surface and allow the illumination to appropriately reach the target illumination area despite the geometric limitations imposed by the presence and position of imaging, microfluidic control, and/or thermal cycling components.
Abstract:
A microscopy apparatus comprises a microscope comprising a stage configured to hold a tissue sample, a UV laser assembly configured to emit a UV laser beam to a viewing area of the tissue sample, and an IR laser assembly configured to emit an IR laser beam to the viewing area of the tissue sample. The UV and IR laser assemblies are oriented so as to emit the respective UV and IR laser beams in a same direction.
Abstract:
A lyophilized antibody panel is disclosed for interrogation using elemental analysis. The antibody panel includes multiple antibodies each element-tagged or element-labelled with one or more isotopes such that each different antibody is isotopically distinguishable from the other antibodies. Each element tag can include one or more unique isotopes or unique combinations of isotopes. The set of element-tagged antibodies can be lyophilized in admixture. Thus, the lyophilized element-tagged antibody panel can be easily and efficiently resuspended and mixed with a sample prior to interrogation with an elemental analyzer, such as a mass spectrometer. This lyophilized element-tagged antibody panel can provide the benefits of an element-tagged assay while also being easy to use and remaining stable for long durations.
Abstract:
The present disclosure provides a "looping amplification" method to increase the specificity of nucleic acid amplification. This increased specificity facilitates multiplexing to a much higher degree than was previously possible.
Abstract:
This invention provides technology for transdifferentiating cells from one cell type to another. The cells are cultured with one or more vector-free gene regulator oligonucleotides concurrently or in succession, and then harvested when cell markers or the morphology of the culture shows that transdifferentiation is complete. Suitable gene regular oligonucleotides include microRNAs and messenger RNAs that encode a differentiation factor. Conditions for transdifferentiation can be optimized by dividing cells into different culture chambers of a microfluidic device. Cells are cultured with different additives in each chamber, and then compared. Transdifferentiated cells produced according to this invention can provide a consistent source of tissue for use in regenerative medicine.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
The invention provides a method for detecting a target nucleotide sequence by tagging the nucleotide sequence with a nucleotide tag, providing a probe oligonucleotide with a melting temperature Tm1, comprising a regulatory sequence and a nucleotide tag recognition sequence; incorporating the probe oligonucleotide into the tagged polynucleotide in a polynucleotide amplification reaction, providing a regulatory oligonucleotide with a melting temperature Tm2, comprising a sequence segment that is at least partially complementary to the regulatory sequence, amplifying the tagged target nucleic acid sequence in a PCR amplification reaction using the probe oligonucleotide as a primer, and detecting the amplification product; wherein Tm1 and Tm2 are higher than the annealing temperature associated with the polynucleotide amplification reaction.
Abstract:
METHOD AND SYSTEM FOR MANUFACTURING INTEGRATED FLUIDIC CHIPS ABSTRACT OF THE DISCLOSURE An integrated fluidic chip includes a substrate defined by a lateral surface area greater than 28 square inches. The integrated fluidic chip also includes a first elastomeric layer having a mold surface and a top surface. The mold surface of the first elastomeric layer is joined to a portion of the substrate. The first elastomeric layer includes a plurality of first channels extending normally from the substrate to a first dimension inside the first elastomeric layer. The integrated fluidic chip further includes a second elastomeric layer having a mold surface and a top surface. The mold surface of the second elastomeric layer is joined to at least a portion of the top surface of the first elastomeric layer.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.