Abstract:
Embodiments of the present invention relate to reagents and their use for elemental imaging mass spectrometry of biological samples. The embodiments comprising methods for quantifying one or more analytes within a sample, comprising the steps of: (a) providing the sample, wherein the one or more analytes are immobilized to a sample carrier, wherein the sample has been labelled with one or more mass tags comprising one or more labelling atoms, (b) performing mass cytometry on the sample to determine the level of the one or more labelling atoms, wherein the level of the one or more labelling atoms corresponds to the copy number of the one or more analytes.
Abstract:
Analyzing samples injected into an inductively coupled plasma source can be improved by one or more of a stabilizing solution mixable with a sample prior to injection and a heated injector. The stabilizing solution can minimize the difference in osmotic pressure between the solution and the cells with a relatively low amount of dissolved solids (e.g., at or below about 0.2%). The stabilizing solution can contain a salt (e.g., ammonium nitrate) present in concentrations of at least 5 mM. The injector can be heated before and/or during injection. In some cases, heat from adjacent parts can be channeled into the injector to improve heating of the injector. An injector heated to sufficient temperatures can minimize solute buildup and can extend the usable time between cleanings. These improvements can be especially useful in elemental analysis, such as inductively coupled plasma mass spectrometry or inductively coupled plasma optical emission spectrometry.
Abstract:
A lyophilized antibody panel is disclosed for interrogation using elemental analysis. The antibody panel includes multiple antibodies each element-tagged or element-labelled with one or more isotopes such that each different antibody is isotopically distinguishable from the other antibodies. Each element tag can include one or more unique isotopes or unique combinations of isotopes. The set of element-tagged antibodies can be lyophilized in admixture. Thus, the lyophilized element-tagged antibody panel can be easily and efficiently resuspended and mixed with a sample prior to interrogation with an elemental analyzer, such as a mass spectrometer. This lyophilized element-tagged antibody panel can provide the benefits of an element-tagged assay while also being easy to use and remaining stable for long durations.
Abstract:
The invention relates to methods and devices for molecular cytometry. The molecular cytometer is for use in the analysis of molecular tag labeled particles. In the molecular cytometer, volatile molecular tags attached to the particles, such as cells, are released as groups of molecular tags and ionized by the method of soft ionization to produce corresponding groups of molecular ions. The molecular cytometer has two detectors, one to detect the presence of the groups of molecular ions and the other to detect mobility separated molecular ions. The mobility separated molecular ions are synchronized to correspond with the groups of molecular ions.
Abstract:
The invention relates to methods and devices for analysis of samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The invention provides methods and devices in which individual ablation plumes are distinctively captured and transferred to the ICP, followed by analysis by mass cytometry.
Abstract:
A new class of mass-tag polymers is provided, which include enriched metal isotopes such as zirconium and hafnium mass tags. The chemistry of these new mass tags are different from that of lanthanide mass tags, and opens up new mass channels that can be used in mass cytometry. These polymers may be used for mass cytometry, therapeutic delivery of a radioactive isotope, or screening of a therapeutic isotope. Aspects include a kit, method of making, and method of using a polymer, isotopic composition, or both. A kit may include a polymer. The polymer may include pendant groups that chelate an enriched isotope, such as zirconium and/or hafnium. The kit may include an isotopic composition comprising an enriched zirconium or hafnium isotope. Polymers may be conjugated to a biologically active material. Aspects may also include making a kit. Aspects include use of a kit, such as for mass cytometry.
Abstract:
This disclosure is directed to systems and methods that enable optical-based cytometric techniques and mass cytometric techniques to be used in the investigation of the same set of particles. The systems and methods include an optical analysis system that individually receives one or more particles of a sample of particles. The optical analysis system generates optical particle data for each optically detectable particle of the sample that passes through the optical analysis system. A mass cytometry system also receives each particle that passes through the optical analysis system and generates mass particle data for each detectable particle that enters the mass cytometry system. The methods and systems correlate the optical particle data and the mass particle data associated with the same particles.
Abstract:
A combination of mutually exclusive cell-based analytical techniques can be applied to the same group of cells for analysis. The same group of cells can be prepared for analysis by each technique resulting with candidate cells targeted for mass cytometry analysis. This configuration allows for the correlation of the information between each technique to produce a matrix of multi dimension of cellular information with the same group of cells.