Abstract:
본 발명은 나노공진기에 관한 것으로서, 양단부에 전극(11)이 마련되고 이들 전극을 연결하는 진동부(12)가 마련된 공진기 본체(10); 상기 공진기 본체(10)의 진동부(12) 인접 측부에 배치되어 진동부(12)의 좌우 구동이 가능하도록 하는 좌우구동전극(20); 및 상기 공진기 본체(10)의 진동부(12) 인접 상부에 배치되어 진동부(12)의 상하 구동이 가능하도록 하는 상하구동전극(30)을 포함하여 구성된다. 따라서, 공진기 본체의 진동부 좌우측 및 상부에 구동 전극을 각각 배치하여 전자기력에 의한 좌우방향 공진뿐만 아니라 정전기력(Electrostatic force)에 의한 상하 구동 역시 가능하도록 함으로써, 교류 전압과 함께 직류 전압(DC voltage)을 동시에 이용하여 교류 전압(AC voltage) 구동은 물론 상하좌우 직류 전압(DC voltage) 튜닝도 가능하게 되며 이를 통해 공진기의 선형성을 유지하는 동시에 민감성 및 작동 계수(Q-factor)를 주어진 환경 하에서 항시 최적화시킬 수 있고, 또한, 서로 다른 공진 주파수 대역을 하나의 공진기에서 구동이 가능하게 되어 하나의 디바이스가 두 가지의 디바이스의 기능을 갖게 되어 나노 공진기의 공진 주파수 튜닝 이외의 다른 새로운 공진 주파수 변조가 가능하게 되는 등의 효과를 얻는다.
Abstract:
본 발명은 나노공진기 제조방법에 관한 것으로서, 실리콘기판(10) 상면에 희생층(20)을 증착시키는 단계; 상기 희생층(20) 상면에 공진층(35)을 증착시키는 단계; 상기 공진층(35) 상면에 포토레지스트(37)를 도포하는 단계; 상기 포토레지스트(37) 상에서 공진부(30) 형상의 마스크(39)를 통해 리소그래피 방식으로 노광을 실시하여 공진부(30) 형상을 패터닝하는 단계; 상기 패터닝 된 포토레지스트(37)를 현상하여 공진부(30) 형상이 드러나도록 하는 단계; 상기 공진부(30) 형상에 금속층(40)을 증착하는 단계; 상기 금속층(40)이 층착된 공진부(30) 형상을 갖도록 포토레지스트(37)를 완전히 제거하는 단계; 및 상기 금속층(40), 공진부(30) 및 희생층(20)에 대해 식각을 수행하는 단계를 포함하여 구성된다. 따라서, 공진기 구동시 에너지 손실을 최소화함은 물론 공진기의 작동 효율 및 공진기 주파수 특성의 안정성을 증가시킬 수 있도록 하는 등의 효과를 얻는다.
Abstract:
PURPOSE: A method for manufacturing a nano structure with a suspender and the nano structure manufactured by the same are provided to improve the precision of the nano structure by wet-etching the upper side of a substrate around a bottom electrode to upwardly expose the suspender and the bottom electrode. CONSTITUTION: A bottom electrode(21) is formed on a substrate(10) by depositing a first material. A suspender(30) is formed by depositing a second material. A top electrode(22) is formed by depositing a third material on the upper side of the cross section of the suspender. The upper side of the substrate is etched.
Abstract:
The present invention provides a capacitor manufacturing method capable of improving the efficiency and performance of a capacitor by converting the dielectric constant of a dielectric included between the two electrodes of the capacitor and the effective capacitance of the capacitor. The capacitor manufacturing method of the present invention comprises (a) a step of preparing graphine oxide existed in a solution condition; (b) a step of applying alternating current to a gap between the two electrode layers after forming a first electrode layer and a second electrode layer on a circuit board; (c) a step of forming a graphene oxide dielectric layer between the two electrode layers using a dielectrophoresis method after dropping graphene oxide solution between the two electrode layers in which the alternating current is applied; and (d) a step of combining chemicals on the surface of the graphene oxide dielectric layer formed between the two electrode layers.
Abstract:
The present invention provides a method for manufacturing a semiconductor device having excellent stability and productivity through a simple lithography process with graphene having good electrical conductivity and palladium allowing easy exchange of electrons with the graphene and a semiconductor device manufactured by the method. The method for manufacturing a semiconductor device according to the present invention comprises the steps of forming a groove in a substrate and sequentially laminating a gate electrode and a dielectric inside the groove; applying graphene on the substrate to touch the upper surface of the dielectric; patterning the applied graphene in a desired shape using a lithography process; applying photoresist to the substrate so that palladium can be coated on a part of the patterned graphene and then patterning the photoresist through the lithography process; depositing the palladium on the patterned photoresist to coat the palladium on a part of the graphene; removing all photoresist and palladium except for the palladium coated on the part of the graphene; and forming a source electrode and a drain electrode to be connected to both sides of the graphene.
Abstract:
The present invention provides a polymer-based flexible printed circuit board and a fabrication method thereof : capable of fabricating a printed circuit board having superior electrical, optical and mechanical characteristics with costs lower than the existing method; and capable of comprising an electrical and electronic circuit by effectively applying the graphene to the surface, although which surface subject to install is a curved surface by forming a material of a printed circuit board with a flexible polymer material, which printed circuit board uses graphene as a transmission line conductor of the printed circuit board circuit pattern is printed on. The printed circuit board fabrication method using graphene according to the present invention includes: a first step for preparing a substrate consisting of a polymer material; a second step for forming a line groove in a circuit pattern on the substrate; a third step for coating a graphene dispersion solution and intruding the coated graphene dispersion solution in the line groove; a fourth step for removing the graphene dispersion solution coated on the substrate part except for the line groove part; and a fifth step for finally completing a printed circuit board having graphene patterned by vaporizing moisture and volatile material included in the graphene dispersion solution injected into the line groove.
Abstract:
PURPOSE: A graphene gas sensor unit, a complex thereof, and a manufacturing method thereof are provided to improve sensitivity even if the gas sensor unit is used for a long time. CONSTITUTION: A graphene gas sensor unit comprises a substrate(10), grapheme(20), and metal electrodes(30). A groove(11) is formed in the substrate and is composed of silicon or polydimethylsiloxane with an oxidized silicon film. A protective layer is formed on the substrate. The grapheme is hung on a part of the groove and forms a channel. The channel formation part of the grapheme is bent in a half-circle shape. The metal electrodes are formed in both ends of the groove of the substrate and are composed of gold.