Abstract:
A vanadium compound represented by following General Formula (1). In General Formula (1), R1 represents a linear or branched alkyl group having 1 to 7 carbon atoms and n represents a number from 2 to 4. R1 preferably represents a secondary alkyl or a tertiary alkyl. It is preferred that in General Formula (1), n is 2 and R1 is tert-butyl group or tert-pentyl group, since the compound has a broad ALD window and high thermal decomposition temperature to be able to form a good quality vanadium-containing thin film that has a small carbon residue when used as an ALD material.
Abstract:
The present invention provides a tin compound represented by the following general formula (1) (in the formula (1), R1 to R4 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and R5 represents an alkanediyl group having 1 to 15 carbon atoms), a thin-film forming raw material including the compound, a thin-film formed by using the thin-film forming raw material, a method of using the compound as a precursor for producing the thin-film, and a method of producing a thin-film including: introducing a raw material gas obtained by vaporizing the thin-film forming raw material into a treatment atmosphere having a substrate set therein; and subjecting the tin compound in the raw material gas to decomposition and/or a chemical reaction in the treatment atmosphere, to thereby produce a thin-film containing a tin atom on a surface of the substrate.
Abstract:
The present invention provides a thin-film forming raw material, which is used in an atomic layer deposition method, including a compound represented by the following general formula (1): where R1 to R4 each independently represent an alkyl group having 1 to 5 carbon atoms, and A1 represents an alkanediyl group having 1 to 5 carbon atoms.
Abstract:
A diazadienyl compound represented by General Formula (I) below: wherein R1 and R2 each independently represent a C1-6 linear or branched alkyl group, R3 represents hydrogen, or a C1-6 linear or branched alkyl group, M represents a metal atom or a silicon atom, and n represents a valence of the metal atom or silicon atom represented by M.
Abstract:
This invention provides a copper compound represented by General Formula (I) below. In General Formula (I), R1 to R3 independently represent a linear or branched alkyl group with a carbon number of 1 to 5; provided that R1 and R2 are a methyl group, R3 represents a linear or branched alkyl group with a carbon number of 2 to 5; and provided that R1 is a methyl group and R2 is an ethyl group, R3 represents a methyl group or a linear or branched alkyl group with a carbon number of 3 to 5. A starting material for forming a thin film of the present invention includes the copper compound represented by General Formula (I). The present invention can provide a copper compound which has a low melting point, can be conveyed in a liquid state, has a high vapor pressure, and is easily vaporizable, and also a starting material for forming a thin film which uses such a copper compound.
Abstract:
Provided is a method of producing a thin-film containing a hafnium atom on a surface of a substrate by an atomic layer deposition method, including: a step 1 of causing a raw material gas obtained by vaporizing a thin-film forming raw material containing a hafnium compound represented by the following general formula (1) to adsorb to the surface of the substrate to form a precursor thin-film; a step 2 of evacuating the raw material gas remaining unreacted; and a step 3 of causing the precursor thin-film to react with a reactive gas at a temperature of 300° C. or more and less than 450° C. to form the thin-film containing a hafnium atom on the surface of the substrate:
wherein R1 and R2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R3 and R4 each independently represent an alkyl group having 1 to 3 carbon atoms.
Abstract:
A ruthenium compound represented by a general formula described in the specification, a raw material which is for forming a thin film and which contains the ruthenium compound, and a method of producing a thin film using the raw material for forming a thin film are provided.
Abstract:
A raw material for forming a thin film, comprising a compound represented by General Formula (1) below. (in the formula, R1 represents a linear or branched alkyl group having 1 to 5 carbon atoms, R2 represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms, R3 and R4 each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms, A represents an alkanediyl group having 1 to 4 carbon atoms and M represents copper, iron, nickel, cobalt or manganese.)
Abstract:
A novel compound represented by the general formula (I) or (II) below: [in the formula, each of R1 and R2 independently represent a C1˜12 hydrocarbon group, and Si(R3)3 is optionally substituted for a hydrogen atom in the hydrocarbon group; however, R1 and R2 are different groups; R3 represents a methyl or ethyl group; M represents a metal atom or silicon atom; and n is an integer from 1 to 4].