Abstract:
A bumping process includes providing a silicon substrate, forming a titanium-containing metal layer on the silicon substrate, wherein the titanium-containing metal layer comprises a plurality of first areas and a plurality of second areas, forming a photoresist layer on the titanium-containing metal layer, patterning the photoresist layer to form a plurality of opening slots, forming a plurality of bottom coverage layers at the opening slots, proceeding a heat procedure, forming a plurality of external coverage layers to make each of the external coverage layers connect with each of the bottom coverage layers, wherein said external coverage layer and said bottom coverage layer form a wrap layer and completely surround the copper bump, forming a plurality of connective layers on the external coverage layers, removing the photoresist layer, removing the second areas and enabling each of the first areas to form an under bump metallurgy layer.
Abstract:
A method of fabricating a semiconductor package includes the steps of: disposing semiconductor devices on a carrier; forming an encapsulation on the carrier to cover the semiconductor devices, a recession of the encapsulation includes a strengthening portion and a recessed portion, the strengthening portion protrudes from the recessed portion and surrounds the recessed portion; and removing the strengthening portion of the recession of the encapsulation.
Abstract:
A package including a first carrier, a seed layer, wires, a die and a molding material is provided. The first carrier is removed to expose the seed layer after disposing a second carrier on the molding material, then the seed layer is removed to expose the wires, and a gold layer is deposited on each of the wires by immersion gold plating, finally a semiconductor device is obtained. The gold layer is provided to protect the wires from oxidation and improve solder joint reliability.
Abstract:
A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.
Abstract:
A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.
Abstract:
A semiconductor manufacturing method includes providing a substrate having a metallic layer that includes a first metal layer and a second metal layer, the first metal layer comprises plural base areas and plural first outer lateral areas, the second metal layer comprises plural second base areas and plural second outer lateral areas; forming a first photoresist layer; forming plural bearing portions; removing the first photoresist layer; forming a second photoresist layer; forming plural connection portions, each connection portion comprises a first connection layer and a second connection layer; removing the second photoresist layer to reveal the connection portions and the bearing portions; removing the first outer lateral areas; reflowing the second connection layers to form plural composite bumps; removing the second outer lateral areas to make the first base areas and the second base areas form plural under bump metallurgy layers.
Abstract:
A bumping process includes providing a silicon substrate; forming a titanium-containing metal layer on silicon substrate, the titanium-containing metal layer comprises a plurality of first areas and a plurality of second areas; forming a first photoresist layer on titanium-containing metal layer; patterning the first photoresist layer to form a plurality of first opening slots; forming a plurality of copper bumps within first opening slots, said copper bump comprises a first top surface and a first ring surface; removing the first photoresist layer; forming a second photoresist layer on titanium-containing metal layer; patterning the second photoresist layer to form a plurality of second opening slots; forming a plurality of bump isolation layers at spaces, the first top surfaces and the first ring surfaces; forming a plurality of connective layers on bump isolation layers; removing the second photoresist layer, removing the second areas to form an under bump metallurgy layer.
Abstract:
A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.
Abstract:
A carrier with three-dimensional capacitor includes a substrate and a three-dimensional capacitor, wherein the substrate comprises a trace layer having a first terminal and a second terminal. The three-dimensional capacitor is integrally formed as one piece with the trace layer. The three-dimensional capacitor and the trace layer are made of same material. The three-dimensional capacitor comprises a first capacitance portion and a second capacitance portion, the first capacitance portion comprises a first section, a second section and a first passage, the second capacitance portion is formed at the first passage. The second capacitance portion comprises a third section, a fourth section and a second passage communicated with the first passage. The first capacitance portion is located at the second passage, a first end of the first capacitance portion connects to the first terminal, and a third end of the second capacitance portion connects to the second terminal.
Abstract:
A package including a first carrier, a seed layer, wires, a die and a molding material is provided. The first carrier is removed to expose the seed layer after disposing a second carrier on the molding material, then the seed layer is removed to expose the wires, and a gold layer is deposited on each of the wires by immersion gold plating, finally a semiconductor device is obtained. The gold layer is provided to protect the wires from oxidation and improve solder joint reliability.