Abstract:
A light-emitting device is provided. The light-emitting device comprises a substrate; a semiconductor stack on the substrate comprising a first region and a second region; a first trench extending from the semiconductor stack to the substrate to expose a surface of the substrate and separating the first region from the second region; and a first electrode comprising a first pad on the first region and a first extending electrode connecting to the first pad, wherein the first extending electrode is across the first trench.
Abstract:
A light-emitting device comprises a substrate having an top surface; a first semiconductor stack comprising a first upper surface and a first side wall, wherein the first semiconductor stack is on the top surface and exposes an exposing portion of the top surface; a second semiconductor stack comprising a second side wall, wherein the second semiconductor stack is on the first upper surface and exposes an exposing portion of the first upper surface; wherein the first side wall and the exposing portion of the top surface form an acute angle α between thereof, and the second side wall and the exposing portion of the first upper surface form an obtuse angle β between thereof.
Abstract:
A light-emitting device, comprising: a substrate; a semiconductor stacking layer comprising a first type semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises a bonding layer, a conductive layer, and a first barrier layer between the bonding layer and the conductive layer; wherein the conductive layer has higher standard oxidation potential than that of the bonding layer.
Abstract:
A light-emitting device comprising: a light-emitting stacked layer having a first conductivity type semiconductor layer; a light-emitting layer formed on the first conductivity type semiconductor layer; and a second conductivity type semiconductor layer formed on the light-emitting layer; a transparent conductive oxide layer formed on the second conductivity type semiconductor layer wherein the transparent conductive oxide layer having a first portion and a second portion and the upper surface of the transparent conductive oxide layer is a textured surface; a first electrode formed on the second portion of the transparent conductive oxide layer, and a second electrode formed on the first conductivity type semiconductor layer; a planarization layer formed on the first portion of the transparent conductive oxide layer, and the second electrode; and a reflective layer formed on the planarization layer that is devoid of the first electrode and the second electrode.
Abstract:
A light-emitting device, comprising: a substrate; a semiconductor stacking layer comprising a first type semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises a bonding layer, a conductive layer, and a first barrier layer between the bonding layer and the conductive layer; wherein the conductive layer has higher standard oxidation potential than that of the bonding layer.
Abstract:
A light-emitting device, comprising: a substrate; a semiconductor stacking layer comprising a first type semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises a bonding layer, a conductive layer, and a first barrier layer between the bonding layer and the conductive layer; wherein the conductive layer has higher standard oxidation potential than that of the bonding layer.
Abstract:
A light-emitting device comprises a first semiconductor layer; an active layer on the first semiconductor layer; a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises an adhesion layer on the second semiconductor layer, a conductive layer on the adhesion layer, and a bonding layer on the conductive layer, and wherein the electrode structure comprises a center region and an edge region, a thickness of each layer of the edge region of the electrode structure is smaller than that of the center region.
Abstract:
A light-emitting device comprises a first semiconductor layer; and a transparent conductive oxide layer comprising a diffusion region having a first metal material and a non-diffusion region devoid of the first metal material, wherein the non-diffusion region is closer to the first semiconductor layer than the diffusion region.
Abstract:
A light-emitting diode structure comprising: a substrate; a light-emitting semiconductor stack on the substrate, wherein the light-emitting semiconductor stack comprises a first semiconductor layer, a second semiconductor layer with different polarity from the first semiconductor layer, and a light-emitting layer between the first semiconductor layer and the second semiconductor layer; a first electrical pad on the substrate, wherein the first electrical pad is apart from the light-emitting semiconductor stack and electrically connects to the first semiconductor layer; and a second electrical pad on the substrate, wherein the second electrical pad is apart from the light-emitting semiconductor stack and electrically connects to the second semiconductor layer, wherein the first electrical pad and the second electrical pad are not higher than the light-emitting semiconductor stack.
Abstract:
A light-emitting device includes: a substrate having a top surface, wherein the top surface comprises a first portion and a second portion; a first semiconductor stack on the first portion, comprising a first upper surface and a first side wall; and a second semiconductor stack on the first upper surface, comprising a second upper surface and a second side wall, and wherein the second side wall connects the first upper surface; wherein the first semiconductor stack comprises a dislocation stop layer; wherein the dislocation stop layer comprises AlGaN; and wherein the first side wall and the second portion of the top surface form an acute angle α between thereof.