Abstract:
The invention relates to insulating combinatorial nucleobase oligomers that comprise universal base analogs, where the oligomers are formed by the ligation of two or more oligomer "blocks" via a covalent linkage. Universal bases may serve to insulate specifically binding nucleobases from the effects of the covalent linker region joining two oligomer blocks together, so that the universal bases at least partially negate the Tm penalty caused by the covalent linkage, effective to reduce the required minimal length of the oligomer blocks and the combinatorial oligomer. The resulting insulating nucleobase combinatorial oligomers find use in any hybridization-based application, including use as probes and primers. The combinatorial oligomers of the present invention provide advantages over existing combinatorial oligomer systems currently known in the art.
Abstract:
Described herein are methods for preparing DNA templates for single-cell transcript sequencing of RNA from a population of cells. The methods entail distributing cells from the population into separate reaction volumes so that a plurality of separate reaction volumes each contain a single, isolated cell, wherein the cells have been treated with a fixative prior to distribution. The isolated cells are then permeabilized or disrupted, and cDNA is prepared by reverse transcript, followed by amplification. Also provided is a novel chemistry for efficient production of DNA templates from T-cell receptors or immunoglobulins in single cells.
Abstract:
Kits, primers, and methods are provided herein for detecting relative target source to reference source ratios in a biological sample, by distributing the biological sample into discrete subsamples, wherein the biological sample includes, a plurality of target molecules on a target source; and a plurality of reference molecules on a reference source; providing target primers directed to one or more of the plurality of target molecules and reference primers directed to one or more of the plurality of reference molecules; performing digital amplification with the target primers and the reference primers; and detecting the presence or absence of amplified target products with target probes and detecting the presence or absence of amplified reference products with reference probes, wherein the ratio of amplified target products to amplified reference products is indicative of a relative amount of target source to reference source in a biological sample.
Abstract:
The present invention provides amplification-based methods for detection of genotype, mutations, and/or aneuploidy. These methods have broad applicability, but are particularly well-suited to detecting and quantifying target nucleic acids in free fetal DNA present in a maternal bodily fluid sample.